Redian新闻
>
CCF-NLP走进高校之“走进厦门大学”

CCF-NLP走进高校之“走进厦门大学”

公众号新闻


MLNLP社区是国内外知名的机器学习与自然语言处理社区,受众覆盖国内外NLP硕博生、高校老师以及企业研究人员。
社区的愿景是促进国内外自然语言处理,机器学习学术界、产业界和广大爱好者之间的交流和进步,特别是初学者同学们的进步。
转载自 | MLNLP


1

活动介绍


CCF-NLP走进高校”是由中国计算机学会自然语言处理专业委员会(CCF-NLP)发起,联合MLNLP及各个知名高校开展的一系列高校NLP研究分享活动。通过特邀嘉宾分享交流,促进更多师生对自然语言处理前沿进展的了解,帮助在校计算机及相关专业大学生成长和发展。

本期走进高校活动将于2024年4月20日9:00—12:00走进“厦门大学”,与厦门大学一起聆听各位嘉宾在NLP领域的研究成果。


2

活动流程


活动流程(含10分钟Q&A)

主持人:张岳

09:00--09:05   王昊奋     开场介绍 + CCF-NLP介绍

09:05--09:10   张俊松     厦门大学介绍

活动主持人:苏劲松

09:10--09:50   徐   童     分享主题:大模型增强的多模态认知智能:探索与尝试(分享+Q&A)             

09:50--10:30   张拳石     分享主题:神经网络是否可以被严谨地解释清楚?以及可解释性技术在大模型上的应用落地(分享+Q&A)

10:30--11:10   陈   谐     分享主题:Advancing Self-supervised Audio Learning and Its Integration with Large Language Models(分享+Q&A)

11:10--11:50   张   岳     分享主题:Fast-DetectGPT高效零样本机器生成文本检测(分享+Q&A)

11:50--12:00   活动总结


3

嘉宾介绍


一、主持人:

张 岳

西湖大学教授

嘉宾简介:张岳,西湖大学教授。主要研究领域为自然语言处理、文本挖掘及相关的机器学习方法。研究成果包括机器学习引导搜索的结构预测算法、多任务联合模型、文本表示和图神经网络、自然语言处理中的常识、逻辑推理以及泛化问题,因果机制引导的自然语言处理等。著有剑桥大学出版社《自然语言处理——机器学习视角》,编写牛津参考文献自然语言处理。担任国内外顶级会议CCL 2020、EMNLP 2022程序委员会共同主席。担任transactions for ACL期刊执行编辑,以及四个transaction期刊副主编。获多个国际会议最佳论文奖


苏劲松
厦门大学教授

嘉宾简介:苏劲松,厦门大学信息学院教授、电影学院,人工智能研究院双聘导师。国家特支计划青年拔尖人才,福建省杰出青年基金获得者,入选2023年度全球前2%顶尖科学家榜单。主要研究方向是自然语言处理,大模型,AI for Sciences。共发表CCF-A/B论文120余篇,获得2020年钱伟长中文信息处理科学技术奖—汉王青年创新奖,国家示范型软件学院联盟20周年优秀专职教师奖


二、开场介绍 + CCF-NLP介绍:

王昊奋

同济大学特聘研究员

嘉宾简介:王昊奋,上海交大博士、上海市优秀博士,同济大学百人计划特聘研究员,博士生导师。其研究兴趣及专长是知识图谱、自然语言处理、对话式用户交互、智能内容生成。他是全球最大的中文开放知识图谱联盟OpenKG发起人之一。出版了《自然语言处理实践》《知识图谱方法、实践与应用》等著作。他还受邀在世界人工智能大会等诸多国际与国内智能峰会上担任讲者,并在自然语言处理国内顶级会议NLPCC多次担任知识图谱方向主席,长期作为ISWC, WWW, AAAI等人工智能国际顶级会议程序委员会委员。负责参与10余项国家自然科学基金、863重大专项、科技部科技支撑、经信委和科委等AI相关项目,共发表100余篇AI领域高水平论文。长期在一线人工智能公司担任CTO之职,荣获徐汇区学科带头人人才计划。他构建了全球首个可交互养成的虚拟偶像—“琥珀·虚颜”;所构建的智能客服机器人已累计服务用户超过10亿人次,并成功入选中国人工智能产业发展联盟最佳AI应用案例。目前,他担任中国计算机学会术语工委副主任,SIGKG主席,上海秘书长,中国中文信息学会理事,语言与知识计算专委会副秘书长,上海市计算机学会自然语言处理专委会副主任,上海交通大学AI校友会秘书长等社会职位。



三、厦门大学

张俊松
厦门大学信息学院副院长
嘉宾简介:张俊松,厦门大学信息学院副院长,人工智能系副教授,脑认知与智能计算实验室主任,毕业于浙江大学计算机辅助设计与图形学国家重点实验室,获计算机科学与技术工学博士学位,厦门大学数学科学学院“人工智能基础”博士后出站,曾在美国南加州大学、加州理工学院等校访问学习。主要研究领域为人工智能与脑认知科学、医学和艺术设计等的交叉研究,在国内外期刊和会议《Nature Communications》《Science Advances》《IEEE Transactions on Visualization and Computer Graphics》《ACM Transactions on Applied Perception》《Computer Graphics Forum》和《中国科学:信息科学》等上面发表论文50余篇,在脑科学与人工智能方面的工作曾被国家自然科学基金委在《Science Foundation in China》(2019年第2期)作为研究亮点报道,获授权国家发明专利8项。先后主持国家自然科学基金、航空科学基金、产学研项目,参与863、973、国家自然基金等项目二十余项。


四、分享嘉宾:

徐童
中国科学技术大学特任教授

嘉宾简介:徐童,中国科学技术大学特任教授、博士生导师,中国中文信息学会青年工作委员会副秘书长,国家优秀青年科学基金获得者。研究领域为多模态知识发现。发表中国计算机学会推荐A类期刊/会议论文70余篇。获3项国际学术会议论文奖项,指导学生获国内外学术竞赛/测评冠军10余项。2022年获安徽省科技进步二等奖、安徽省计算机学会优秀青年科学家奖。

报告题目大模型增强的多模态认知智能:探索与尝试

报告介绍:多模态认知智能已成为人工智能发展的主流趋势之一,旨在通过多模态语义的深度表示与推理,有效支撑面向多媒体场景的富语义下游应用。当下,方兴未艾的多模态大模型依托其强大的语义理解与归纳能力,有望为突破传统多模态技术在感知与整合深度语义线索方面的局限性提供新的助力。针对上述问题,本次报告将简要总结团队围绕大模型增强的多模态认知所开展的技术探索,以及针对多模态大模型语义幻觉和高训练开支的改进尝试。


张拳石
上海交通大学副教授

嘉宾简介:张拳石,上海交通大学电院计算机科学与工程系长聘教轨副教授,博士生导师,入选国家级海外高层次人才引进计划,获ACM China新星奖。他于2014年获得日本东京大学博士学位,于2014-2018年在加州大学洛杉矶分校(UCLA)从事博士后研究。张拳石在神经网络可解释性方向取得了多项具有国际影响力的创新性成果。张拳石承担了TMLR的Action Editor,CCF-A类会议IJCAI 2020和IJCAI 2021的可解释性方向的Tutorial,并先后担任了AAAI 2019, CVPR 2019, ICML 2021大会可解释性方向的分论坛主席。

报告题目:神经网络是否可以被严谨地解释清楚?以及可解释性技术在大模型上的应用落地

报告介绍:虽然近年来神经网络的可解释性研究得到了广泛的关注,但是大部分可解释性研究依然停留在工程技术层面,大量根本性问题尚未得到解决,尚缺少相对严谨的理论体系从根本机理层面统一解释神经网络的知识表达和其表征性能。比如,证明神经网络内在决策逻辑是否可以被严谨地解释为符号化的概念,如何量化神经网络的知识表征,什么是决定神经网络泛化性和鲁棒性的第一性原理,等等。本次报告将介绍如何在博弈交互理论体系下严谨地量化神经网络所建模的概念表征,如何证明解释的严谨性,如何通过概念表征层面的解释提升大模型的训练效率节省成本,如何对大模型安全性进行量化评估。


陈谐
上海交通大学副教授

嘉宾简介:陈谐,上海交通大学计算机科学与工程系长聘教轨副教授,博士生导师,获国家海外高层次人才(青年)项目资助。2009年本科毕业于厦门大学电子工程系,2012年硕士毕业于清华大学电子系,2016年博士毕业于剑桥大学信息工程系,博士毕业后先后在剑桥大学从事博士后研究,美国微软研究院任高级研究员,主管研究员,2021年9月加入上海交通大学。主要研究方向为深度学习,智能语音和声音信号处理,在本领域的国际权威会议和期刊发表论文80余篇。

报告题目:Advancing Self-supervised Audio Learning and Its Integration with Large Language Models

报告介绍:Recently, self-supervised learning has received widespread research interest in speech and audio processing. It demonstrates great potential for learning underlying structure information from large amounts of unlabeled audio. In this talk, I will introduce our recent progress in self-supervised learning on audio and emotional speech data, by introducing utterance and frame-level joint learning, we could achieve significant performance improvement in audio classification and speech emotion recognition. Next, I will introduce our effort to integrate the powerful speech representation with a large language model, to extend the ability of LLMs on speech recognition and spatial audio understanding. We demonstrate that the powerful audio representation plays a vital role, and a simple combination between the audio representation is sufficient to yield promising performance.


张岳
西湖大学教授

嘉宾简介:张岳,西湖大学教授。主要研究领域为自然语言处理、文本挖掘及相关的机器学习方法。研究成果包括机器学习引导搜索的结构预测算法、多任务联合模型、文本表示和图神经网络、自然语言处理中的常识、逻辑推理以及泛化问题,因果机制引导的自然语言处理等。著有剑桥大学出版社《自然语言处理——机器学习视角》,编写牛津参考文献自然语言处理。担任国内外顶级会议CCL 2020、EMNLP 2022程序委员会共同主席。担任transactions for ACL期刊执行编辑,以及四个transaction期刊副主编。获多个国际会议最佳论文奖。

报告题目:Fast-DetectGPT高效零样本机器生成文本检测

报告介绍:大语言模型如ChatGPT和GPT-4在各个领域对人们的生产和生活带来便利,但其误用也引发了关于虚假新闻、恶意产品评论和剽窃等问题的担忧。本文提出了一种新的文本检测方法——Fast-DetectGPT,无需训练,直接使用开源小语言模型检测各种大语言模型生成的文本内容。Fast-DetectGPT在斯坦福大学的DetectGPT基础上,将检测速度提高了340倍,将检测准确率相对提升了75%,成为新的SOTA。在广泛使用的ChatGPT和GPT-4生成文本的检测上,均超过知名商用系统GPTZero的准确率。Fast-DetectGPT同时做到了高准确率、高速度、低成本、通用,扫清了实际应用的障碍。


4

直播平台



视频号


B站

关于我们

MLNLP 社区是由国内外机器学习与自然语言处理学者联合构建的民间学术社区,目前已经发展为国内外知名的机器学习与自然语言处理社区,旨在促进机器学习,自然语言处理学术界、产业界和广大爱好者之间的进步。
社区可以为相关从业者的深造、就业及研究等方面提供开放交流平台。欢迎大家关注和加入我们。

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
让孩子从“逼着学”到“主动学”:最好的教育,是唤醒他们的内驱力美国多所大学又要涨价?除藤校之外,多所公立大学也上调学费...葛均波院士:中国介入医学发展及未来展望 | CCIF&CCPCC2024博士申请 | 上海科技大学屠可伟老师招收NLP方向24级博士/25级硕博抖音出手!严打“厚黑学”“伪成功学”;揭秘Kimi大模型:日均获客成本超20万元|大公司动态博士申请 | 上海交通大学张倬胜老师招收AI/NLP/LLM方向推免硕士/博士东京自由行(7)神舍和寺庙走进云天励飞,共同探寻AI技术前景 | 硅谷高创会(SVIEF)“走进标杆企业”系列活动第4期成功举办2024年8月6~11日广州青少年版NLP执行师课程:让孩子用NLP工具,把梦想照进现实今日arXiv最热NLP大模型论文:对指令太敏感?山东大学提出一致性对齐法,治好大模型敏感体质!博士申请|新加坡管理大学(SMU)邓扬助理教授招收NLP/LLM方向全奖博士、访问学生和研究实习生今日arXiv最热NLP大模型论文:揭露大语言模型短板,北京大学提出事件推理测试基准今日arXiv最热NLP大模型论文:清华大学提出IFT对齐算法,打破SFT与RLHF局限性蒙彼利埃大学2024母校之旅即将启航!走进深圳本土VC之王“深创投”,链接投资资源,注入企业新发展 | 硅谷高创会(SVIEF)“走进标杆企业”系列活动第5期成功举办承葛医药集团与厦门大学博士后流动站联合招收博士后医学、微生物学等方向博士后研究人员4-6名驴象早春战犹酣OCC-WCC 2024特别策划丨关于AI和OCC的那些事儿今日arXiv最热NLP大模型论文:大模型RAG新宠!浙江大学发布自反馈检索增强方法博士申请 | 英国伯明翰大学冯悦老师招收NLP/LLM方向全奖博士/研究实习生今日arXiv最热NLP大模型论文:天津大学发布大模型数学能力细粒度评价基准FineMathNICHE发布2024年美国最难申请的大学排名!冷门大学拿下TOP1,碾压哈佛MIT斯坦福!情人节的玫瑰宾州南瓜节,花样百出五所波士顿名校之一,塔夫茨大学|儿童学习与人类发展/心理学/学校心理学硕博项目厦门航空发布2024年5月国际及地区航班计划,新开/增班厦门-洛杉矶、福州-巴厘岛等多条航线博后招募 | 清华大学NLP实验室招聘大语言模型方向博士后/研究员走近吴立德教授:CV、NLP中国最高奖项得主,讲述复旦大学人工智能几十年往事长篇小说《太门西》连载70:第24章:柳毅龙井(1)霍勇:全国冠心病介入治疗2023年数据报告——从数据说发展 | CCIF&CCPCC2024共话智能测试新机遇,AI4SE 创新巡航活动“走进软通动力”成功举办《泛血管疾病代谢异常管理中国专家共识》盛大发布,开启疾病管理新时代 | 2024 CCIF&CCPCC锐捷助阵CCF特别论坛,共话四川高校数字化转型新篇章今日arXiv最热NLP大模型论文:清华大学:大语言模型的常见词僻意理解能力竟不如中学生今日arXiv最热NLP大模型论文:浙江大学:蒸一蒸,多Agent变成单一模型,效果更好
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。