聊聊大火的扩散模型和AIGC
AI绘画属于AIGC分支之一,在热潮与争议之中,2022年甚至被冠以“AIGC元年”。而随着AI 绘画的火爆,其背后用到的核心技术之一 Diffusion Model(扩散模型)也在图像生成领域大红大紫,甚至风头已经隐隐有开始超过 GAN的趋势了 。
从原理图可以看出,输入的文本首先经过编码,再由一个文字转图像的扩散模型转化为64*64的小图,从而利用超分辨率扩散模型对小图进行处理,在进一步的迭代过程中提升图像的分辨率,得到最后的生成结果——一张1024*1024的最终图像。
扫码领diffusion必读论文
预约AIGC大咖公开课
整体上来看,diffusion model领域正处于一个百花齐放的状态,这个领域有一点像GAN刚提出来的时候,但目前的训练技术让diffusion model直接跨越了GAN领域调模型的阶段,而是直接可以用来做下游任务。这个领域有一些核心的理论问题还需要研究,这就给科研从业者提供个很有价值的研究内容,有很多idea都可以被激发出来,同时由于这个模型已经很work了,它和下游任务的结合也才刚刚起步,有很多地方都可以赶紧占坑。而未来随着diffusion model中存在的问题的解决,diffusion model将逐渐占据深度生成模型的主导。
3月8日,我们邀请顶会论文大佬、顶会审稿人Nick老师,来和大家聊一聊3D AIGC的方方面面,作为未来最有潜力,落地应用最广的研究方向之一,AIGC真的吸足了眼球,而Nick老师也将从AIGC出发,讲解它的落地场景,研究方向以及可能的创新点~
扫码免费预约定顶会大佬直播课
限前一百名粉丝
文末领福利
做科研发论文从结果上,其实可以分为以下三类:
发现一个新方法,并将其运用在一个已知的问题之上(老问题新方法)
发现一个新问题,并将一个已知的研究拓展到这个问题之上(新问题老方法)
发现一个新问题,并且提出一个新方法用以对其进行分析研究(新问题新方法)
以难以程度来考量的话,新问题老方法<老问题新方法<新问题新方法。
限前一百名粉丝
文末领福利
扫码免费领课程资料↑
-END-
微信扫码关注该文公众号作者