经济学人科技 || 大脑类器官正变得越来越像真正的大脑
1
导读
感谢思维导图作者
Summer(琚儿),女,QE在职,梦想能仗翻译/音乐 /健康走天涯
2
听力|精读|翻译|词组
Synchronicity
同步性
英文部分选自经济学人190831science and technology版块
What is a brain?
什么是大脑?
Synchronicity
同步性
Cerebral organoids are becoming more brainlike
大脑类器官正变得越来越像真正的大脑
At what point does a mass of nerve cells growing in a laboratory Petri dish become a brain? That question was first raised seriously in 2013 by the work of Madeline Lancaster, a developmental biologist at the Medical Research Council’s Laboratory of Molecular Biology, in Cambridge, Britain. That year Dr Lancaster and her colleagues grew the first human-derived “cerebral organoid”. They did so using pluripotent human stem cells, which are cells that have the potential to develop into any type of tissue in the human body. The researchers coaxed these cells into becoming nervous tissue that organised itself, albeit crudely, as structures which had some of the cell types and anatomical features of embryonic human brains.
实验室培养皿中培育的神经细胞群到底在何种程度下才能变成大脑呢?2013年,英国剑桥医学研究委员会分子生物学实验室的发育生物学家马德琳·兰卡斯特,在她的研究中首次且严肃地提出了该问题。那一年兰卡斯特博士和她的同事们培育出了第一个由人类衍生出的“大脑类器官”。他们通过使用多功能人类干细胞做到了这一点,这类细胞有潜力发展成任何类型的人体组织。研究人员将这些细胞诱导成可自我有机化的神经组织,虽然很粗糙,但它们的结构中具有胚胎人脑的某些细胞类型和解剖学特征。
The twitch Since then, Dr Lancaster’s work has advanced by leaps and bounds. In March, for example, she announced that her organoids, when they are connected to the spinal cord and back-muscle of a mouse, could make that muscle twitch. This means cerebral organoids are generating electrical impulses. And other scientists are joining the fray. One such, Alysson Muotri of the University of California, San Diego, has published this week, in Cell Stem Cell, a study that looks in more detail at cerebral-organoid electrical activity.
从那之后,拉卡斯特博士的研究进展一路高歌。例如,今年三月份她宣布她培育的类器官在连接老鼠的脊椎和背部肌肉时,可以使肌肉抽搐。这说明“大脑类器官”正在产生电脉冲。随后其他科学家也加入了这场混战。来自加州大学圣地亚哥分校的(UCSD)艾利松▪莫特里便是其中一位,本周他在期刊《细胞--干细胞》发表了一项研究,更详细地研究了大脑类器官的电活动。
To carry out their study, Dr Muotri and his colleagues grew and examined hundreds of organoids, each a mere half-millimetre in diameter, over the course of ten months. To probe individual neurons within these, they used tiny, fluid-filled pipettes that acted as electrodes small enough to maintain contact with the surface of an individual cell.
为了开展他们的研究,莫特里博士的团队在十个月的时间里,培育并研究了数百个直径仅为半毫米的类器官。为了将单个神经元注入这些类器官中,他们使用微型、载满液体的移液器作为电极,这些电极可以小到足以与单个细胞的表面保持接触
Neurons probed in this way proved electrically active, so the researchers went on to employ arrays of electrodes inserted simultaneously into different parts of an organoid to study its overall activity. They looked in detail, once a week, at each of the organoids that were chosen for examination. This revealed that, by six months of age, the electrical activity in different parts of an individual organoid had become synchronised.
实验证明,植入的神经元是有电活性的,因此研究人员继续将电极阵列同时插入类器官中的不同部位,以研究类器官的整体电活性。他们每周都会仔细观察被选作研究对象的类器官。观察结果表明,六个月后,不同部位的电活动在单个类器官已经同步。
Such synchronicity is also a feature of real brains, including those of preterm human infants of about the same age as Dr Muotri’s organoids. It is regarded as an important part of healthy brain function. So, to check how similar natural and organoid brain waves actually are, the research team ran those waves obtained from their organoids through a computer program that had previously been trained to recognise the electrical activity generated by the brains of premature babies. This algorithm proved able to predict to within a week the ages of laboratory-grown organoids 28 or more weeks old. That suggests those organoids are indeed growing in a manner similar to natural human brains.
这种同步性也是真正大脑的特征之一,包括那些早产儿的大脑,他们与莫特里博士培育的类器官发育时间相仿。同步性被认为是大脑功能健全的重要组成部分。因此,为了检验自然脑电波和大脑类器官电波的相似程度,该研究小组通过一个电脑程序去运行类器官中获得的电波,而该程序之前被用于识别早产儿大脑的电位活动。实验证明,该算法能够在一周内预测实验室培养的类器官的年龄,即28周或28周以上。这表明这些类器官确实在以类似于自然人脑的方式生长。
Brain work
大脑的运作
If further research confirms this opinion, then for medical science that conformity with natural development could be a boon. Neuroscientists have long been held back by the differences between human brains and those of other animals—particularly the brains of rodents, the analogue most commonly employed in medical research. The purpose of the work that Dr Lancaster, Dr Muotri and others involved in the field are engaged in has always been to produce better laboratory models of neurological and psychiatric diseases, so that treatments may be developed.
如果研究进一步证实这一观点,那么对于医学科学来说,这种与自然人脑发育的一致性可能是一种福音。神经科学家长久以来一直困扰于人类大脑与其他动物大脑之间的差异,尤其是啮齿类动物的大脑,因为它们是医学研究中最常用的类似物。兰卡斯特博士、莫特里博士和其他这一领域的工作者正在从事的这一研究,他们的目的始终是建立更好的神经和精神疾病的实验室模型,以便开发治疗方法。
And, although it may be some time in the future, there is also the possibility that organoids might one day be used as transplant material in people who have had part of their brains destroyed by strokes.
虽然可能还比较遥远,但未来某一天,类器官也许能被用于移植材料,治疗那些因中风而大脑部分受损的人。
For ethicists, however, work like this raises important issues. A sub-millimetre piece of tissue, even one that displays synchronised electrical pulsing, is unlikely to have anything which a full-grown human being would recognise as consciousness. But if organoids grown from human stem cells start to get bigger than that, then the question that was posed back in 2013 becomes pressing.
然而,对于伦理学家来说,这样的研究引出了一些重要的问题。一个亚毫米的组织,即使能显示同步电脉冲,也不可能产生任何一个成年人类能辨作意识的东西。但是,如果由人类干细胞培育出的类器官变得比一个亚微米要大,那么早在2013年提出的问题会变得愈发紧迫。
翻译组:
Sinyar,女,理性乐观派,TE爱好者
Angela,女,人大附中高材生,托福110,爱哲学爱猫爱旅行
校核组:
Nikolai,子承父业,蛋糕厂员工,AKB49
Zoey,女,材料专业在读博士生,英语语言爱好者
3
观点|评论|思考
本次观点由Pippy独立完成
Piggy,爱吃鱼,爱跳舞,爱睡回笼觉的小能猫,NUS食品系
作为人体最精密复杂的器官,大脑一直是科学家们想要突破的神秘领域,但距今为止,人类对于大脑仍是知之甚少。许多关于脑部发育或疾病的知识都取自于动物模型,但很多问题仍是未解之谜。比如为何会有左撇子和右撇子?自闭症和精神分裂症是如何产生的?脑部新药在人体上会出现什么不良反应?
脑类器官(brain organoid)的出现,为学界进行人脑相关的研究提供了极大的便利。所谓类器官,就是在体外培养而成的、具备3D结构的微器官。与动物模型不同,它源自于人(从人体干细胞培育),具有与真实人脑相似的一些结构与功能,因而能提供更具价值的研究资料。
当然,说是“脑类器官“,它并非想象中的”微型人脑“ 。目前能培育出来的脑类器官,大小不超过一粒豌豆(真正的人类大脑尺寸要大上万倍),其结构的复杂度也无法与人脑相比(Fig. 1)。脑类器官研究的现状,一方面由于培育技术尚未成熟,而更多的是由于学术界内无法平息的伦理争议(Farahany et al., 2018)。
Fig. 1. Simplified 3D brain organoids in a dish. Credit: Genome Institute of Singapore, A*STAR.
例如,虽然现在的脑类器官仅仅对光照或电流刺激有简单的反应,但随着科技的发展,在不远的未来,它们也许会更完整成型,具备感知能力(例如快乐、疼痛或痛苦),能储存和检索记忆,甚至出现自我意识与认知。到那一天,这些“并非生物学意义上的人类“的生物组织,将被如何定义和处理?我们是否有权利来决定这些”缸中之脑“所要经受的实验痛苦(例如药物毒性测试)?而实验结束后,是否还能如现在一般将所有的器官组织彻底销毁?
而另一个实验产物 – 人兽嵌合体,恐怕是听起来更为科幻又具争议性的话题。早有研究将人脑细胞移植入小鼠脑内生长,相比于体外环境,活体能提供更适宜细胞发育生长的条件,制造更成熟完整的脑类器官组织。也许有一天,我们能够自动物体内培育出完整的人体器官,从而解决移植器官紧缺的这一世界性难题。但再转念一想,这类“人兽嵌合“的实验界限将划在哪里?如果说从猪身上培育出的人肝听起来还没有那么可怕,那么如果是猪头里长出的一颗人脑?一只能和你畅谈风月人生的猪,还能够随时宰杀取脑吗?(突然想起了《钢之炼金术师》中的合成兽,算是童年阴影画面之一了)。
除此之外,伦理学家们还列出了一系列“急需解决“的问题。例如,我们是否有能力准确定义及捕捉大脑中”思维“和”意识“ (成人体内用脑电图能检测到的意识信号,在婴儿、动物或实验大脑中可能并不成立)?何为生死(脑死亡的概念可能会被改写)?何为人类 (一颗发育健全、具有完整感知能力和思维的大脑算人类吗)?以及该如何制定与实验器官/动物相关的法律条规?
科学与伦理之争已非首次。十五世纪,人体解剖被认为是违反了上帝旨意与伦理道德而被明令禁止的行为。再往后,1978年世界首例试管婴儿在英国出生时,亦引起了社会上的轩然大波。而现在,克隆、基因编辑等新兴科技,也在不断遭受着各界的质疑与反对。
作为一个基础的实验室搬砖工科研者,我深深相信,冲突是在探索未知领域时必定会出现的局面,而冲突的存在是良性的,它能帮助科学更健康、稳固地发展,避免出现难以控制的混乱局面。在缺乏人伦道德的约束下,人类的好奇心究竟可以多可怕呢?历史上曾有记录,为了验证“刺激毛细血管能治疗伤寒型肺炎”, 医生每隔4小时便将沸水泼在黑人奴隶身上。为了了解“口吃是否会因心理引导而改变”,健康儿童(孤儿)被故意通过言语虐待来引起口吃。电击曾被广泛用来治疗小儿精神分裂(算是杨永信的祖师爷了)。为了解“接触癌细胞是否会致癌”,恶性癌细胞被注射入数百名(不知情的)患者体内。更不要提战争时期一系列惨无人道的人体实验。
为了不让人类上蹿下跳的好奇心伤到自己,伦理的束缚还是很必要的。它是否会减缓科学的进展?当然是有可能的。但是一辆稳健行驶的汽车,恐怕要比一辆横冲直撞的小疯子更来得令人安心吧。
黑科技令人无限憧憬,但在抵达未来的过程中,愿人们能谨慎前行。
References
Farahany, N. A., Greely, H. T., Hyman, S., Koch, C., Grady, C., Pașca, S. P., ... & Lunshof, J. E. (2018). The ethics of experimenting with human brain tissue. Nature, 556, 429-432.
4
愿景
01 第十五期翻译打卡营
03 早起打卡营
微信扫码关注该文公众号作者