Redian新闻
>
AI 画得太逼真,以至于连 AI 自己都认不出来了

AI 画得太逼真,以至于连 AI 自己都认不出来了

其他

“特朗普被逮捕了!!!”


“消息”首先在 Twitter 传开,热度蹭蹭地窜升。“始作俑者” Eliot Higgins 马上出来澄清:“别误会了,照片是我用 Midjourney 生成的,为此还花钱买了 V5 版本。”


特朗普被捕了丨来自 Twitter @Eliot Higgins


但来不及了,这一系列照片(因为Higgins还连载了“入狱”后续)在 Instagram、TikTok 上“疯传”,全民狂欢的劲头就像一起经历真实的政治事件——川普“入狱”、“越狱”、“出狱”、“再就业”等等层出不穷。


特朗普的狱中生活丨来自 Twitter@Eliot Higgins


由 AI 生成的内容“谎骗”过人眼,起初人们还挺兴奋,但问题是,这种兴奋在最近发生得过于频繁,它开始转变为一种惶恐。


图像之外,还有文字——包括 Science、Nature 等在内的学术期刊对于 ChatGPT 的使用明令限制,不许将其列为论文合著者;一些高校甚至中学老师开始频繁抱怨,学生用 AI 生成的作业越来越多,也越来越难以甄别。


那么,在目前这个阶段,我们还剩下哪些办法能识别出“AI 出品”呢?


  让 AI 指认 AI:26%,我说的是准确率  


如果你也一瞬间将“川普入狱图”信以为真,或根本读不出一篇中规中矩的新闻稿究竟是否出自人类之手,别懊恼!这确实不太容易。


几年前 Deepfake 换脸图片中,还常会因为脸部图像叠加不好,出现“双下巴”等醒目的错乱。然而今天 Midjourney 连结构最难把握的手都能画好了。


Deepfake 脸部重合问题丨源自 Medium 作者 Jonathan Hui


就连 AI 自己,对于什么内容是自己生成的,也不太确信。OpenAI 做了一个分类模型(ai text classifier)检测器(detector)(https://platform.openai.com/ai-text-classifier),在英文文本的评估中,正确识别了 26% 的 AI 生成文本,错误地将 9% 的人类文本标记为 AI 文本。


起初我对此结果存疑。直到我让 Bing 以“春”、“夏”、”秋”、“冬”为话题分别写四首诗,并交给 OpenAI 的检测器来判断。不幸的是,它给出的结果,分别是“文本非常不可能是 AI 写的”,“不可能是 AI 写的”,“不可能是 AI 写的”,“不可能是 AI 写的”——正确率为零。


OpenAI自己的 AI 识别工具,以及市面上另一家 originality.ai 做的检测器本质上都是“语言模型”——就跟 ChatGPT 一样。


OpenAI 识别局限丨源自 OpenAI


Originality.ai (基于 Transformer )搭建了全新架构,在此之上训练一个预训练语言模型。然后用建立在数百万个样本上的训练集对模型进行微调。输入一旦超过模型既定的阈值,就界定该内容是被 AI 生成的。


为了提升准确性,这类工具在生成训练数据中,要尽可能生成多样化的数据(用不同生成方式,和用多个生成模型),以便模型更好地知道 AI 生成的文本类型。


利用现有的人类创作的文本数据对模型进行微调,使 AI 生成的文本更加自然(也就是更像“人话”),以便模型能学到,即便 AI 生成的文本越来越有“迷惑性”,但跟人类之间那个微妙的边界仍然存在——这听起来更像 AI 假“识别”之名行模仿之事。


但至少目前,跨没跨过那个“边界”总有一些标准。GPTZero (也是一款 AI “杀手”,https://gptzero.me/)在辨别一段输入是不是由 AI 生成的,它借助两个文本属性,困惑性(perplexity)、突发性(burstiness)。


“困惑性”是指一段文本的复杂性和随机性。模型接受生成的文本数据集训练,所以机器下一个词接什么,下一句话说什么,可预测性更高。然而人类遣词造句的随机性就高了,说出的话更加让机器意想不到。


“突发性”则指句子之间的变化程度。人类写作,有更多的句子结构变化,长、短句,复杂、简洁句交替使用。机器生成的句子往往更加统一。


但模型的漏洞很容易钻。AI 生成的内容与日俱增,对一份全然不同于,且从未在训练集中出现的内容,AI 极有可能预测错误;短文本对于模型来说简直是灾难,因为文本越短,呈现的变化可能性越少,OpenAI 要求输入的文本至少有 1000 个字符。


  那么 AI “鉴”画的成绩有好点吗?  


很遗憾,也没有。


一位开发者 Matthew Maybe 在开发者社区上传了自己的 image detector。(https://huggingface.co/spaces/umm-maybe/AI-image-detector)


实际上,他就是训练了一个图片二分类模型。训练数据全部来自 Reddit,真实图片来自 r/art 等版块,AI 图片来自 r/midjourney 等版块,并“手动”为这些图片打了标签。


后来经朋友提醒,还将真实图片上传日期限制在 2019 年之前,避免有 AI 生成图片的混入。


使用评价褒贬不一,Reddit 用户说,说不好是不是靠猜的。因为他用户训练的数据样本太少,只有几千个。另外他“故意”不去解决,由计算机处理过(可能指 PS 等软件),而非 AI 生图所造成的判断结果“假阳性”问题。


“与其做一个完美模型,我更想对艺术家负责。”以至于,模型在判断是不是“真”图上,给出结果也有保守“倾向”。


研究者们认为,即便一张图片肉眼看起来“完美”,由于生成过程会留下痕迹,让它仍能被识别出来是AI画的。这些生成痕迹,与摄像头拍摄留下的“标识”不同。而且每个生成算法留下各自独特痕迹,以便溯源。


过往在基于 GANs(生成式对抗网络)的 deepfakes “换脸术”中,通过找生成痕迹的检测方法被证明是有效的。


于是上述研究者们想,类似方法能否用于这段时间发展起来的 AI 生图所基于的扩散模型上。他们发现,扩散模型留下的痕迹,普遍不如 GANs 明显。例如 Stable Diffusion 的痕迹虽弱,但尚可用来检测,DALL-E 2 几乎不可见。


生成痕迹在 DALL-E2 中几乎不可见丨源自参考文献[7]


基于模型之间的差距,以及对现有 detectors 做了效果评估之后,他们得出结论,现有 detectors 最大问题是“通用性”。


引入一个扩散模型生成的图片用以训练,可以帮助检测出类似模型生成的图片,但对其他的检测效果就不好。一个模型是为 GANs 训练的,它很难检测出基于扩散模型的生成图片。


以及当图片因为在社交媒体上经常被压缩、裁剪,从而质量有所下降,detectors 识别起来就有困难。


  先是信不过AI,然后就是人类的相互猜忌  


但今天的 AI 画图,不见得找不出一点错。有的时候画面缺少 3D 建模;在阴影和反射画面中不对称。肉眼挑错的方法虽不是长久之计,但至少是目前最可行的办法。


比如在特朗普被捕的这些照片中。打眼一看画面主体好像没问题,但仔细一看,画面人物越多,“诡异”的事情越多。


比如“多腿”特朗普;


图片来源 Twitter @Eliot Higgins


特朗普肤色不自然,面部呈现一种“蜡质”的不真实;以及找不到主人的手;


图片来源 Twitter @Eliot Higgins


警察的帽子和徽章都模糊处理,细看甚至不尽相同;


图片来源 Twitter @Eliot Higgins


当 AI 表现人物表情,往往以一种比较夸张的方式呈现。(有的时候就连微笑所带来的皮肤褶皱都画得非常明显);


图片来源 Twitter @Eliot Higgins


以及 AI 似乎还没学会“眼神追踪”,一群追赶特朗普的人,他们看向的方向都不相同。


图片来源 Twitter @Eliot Higgins


而在普通人眼中认为完美的 AI 艺术,也在经验老道的艺术家那里形成了一套“经验主义”。


一名 3D 角色艺术家(Dan Eder)说,“如果想试图辨认一张 AI 生成图像,应该考虑作品的整体设计。假设 AI 画了一张“幻想战士盔甲”,乍一看,很漂亮,细节也很丰富,但很多时候这背后没有“逻辑”。逻辑是指,当一位人类艺术家为角色创作盔甲,他得考虑到,这件盔甲的功能性,肢体位置,要能展开多少。”


另一位艺术家则说,AI 生成的图像缺乏“意向性”(指人类的每一个觉知都是指向外部事物),AI 没什么经验基础,能理解人、树、手……是什么。“所有这些都是刚被扔进画面里的,为了让你的提示词和数据点对应起来。这是它能呈现的最接近的东西,但不知道为什么。”


即便艺术家们声称:AI 做图缺少一种清晰的视觉叙事。但这种说法也被认为是一种“事后诸葛亮”。


去年年底,一位数字艺术家 Ben Moran 发推,抱怨自己的作品被 r/Art 版块审核员“禁了”,原因是违法了“no AI art”规则。这幅“战区缪斯”(a muse in warzone)风格的确类似很多 AI 生成艺术(在当时)——文艺复兴绘画风格,穿着战士服的女性。


Moran 自证丨图片来源 Ben Moran


Moran 说,“不信,我交出 PSD 文件。”审核员却说,“不必!如果你是一个‘正经儿’艺术家,你得画些其他风格。口说无凭,因为不会有人再相信,AI 没‘替’你画画。”


AI 学习网络上大量画作,从而形成自己“倾向性”的风格,这本不是人类的错。AI 生成内容逼近肉眼可辨的真实,连内容创作“金字塔”尖的艺术家们也需要自证。讽刺的是像上述例子,为了自证,人类需要主动“避开” AI 所“擅长”的东西了。


参考文献

[1] https://12ft.io/proxy?q=https%3A%2F%2Fwww.wired.com%2Fstory%2Fhow-to-tell-fake-ai-images-donald-trump-arrest%2F

[2] https://www.inquirer.com/politics/nation/ai-trump-arrest-photos-fake-20230322.html

[3] https://originality.ai/how-does-ai-content-detection-work/

[4] https://originality.ai/huggingface-ai-content-detection-review/

[5] https://openai.com/blog/new-ai-classifier-for-indicating-ai-written-text

[6] https://www.npr.org/2023/01/09/1147549845/gptzero-ai-chatgpt-edward-tian-plagiarism

[7] https://arxiv.org/pdf/2211.00680.pdf

[8] https://medium.com/@matthewmaybe/can-an-ai-learn-to-identify-ai-art-545d9d6af226



作者:沈知涵

编辑:卧虫

 一个AI 

AI:这把我不行了,你行你上吧!


本文来自果壳,未经授权不得转载.

如有需要请联系[email protected]

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
什么是“白相人”?“无意间被爸妈发现了秘密后...”狠起来连自己都骗!初九碎碎念【房产】“房贷利率如此之高,以至于人们再也买不起房了!”76岁易中天回厦大当院长,瘦骨嶙峋认不出,与俞敏洪举杯饮酒高歌塞不进成年女性的女装,终于连女明星也穿不进去了…63岁成方圆近照,老得让人认不出,和王刚离婚后至今单身加拿大三华人伪造枫叶卡,成功骗卖$84万的房……专家都认不出假证天天让娃专心,自己都唠叨烦了...心理学博士爸爸讲「注意力」,直接放给孩子听医院自己都有App,预约挂号第三方平台还需要吗?3000元游艇狂欢,还有专属女仆?警方回应!网友:图片逼真,但也有破绽麦当娜整容过度,颁奖礼上肿胀圆润,网友们震惊:彻底认不出来了...绝美挪威荷兰夏日之旅(八)曲折蜿蜒精灵之路 Trollstigen阿宝自己都在用!国产智能扫地机,不弯腰不沾水,3倍效率百元价,一遍搞定家务活Gelsenkirchen (1): 一家奇怪的旅馆离谱!狠起来连自己都不放过!多伦多警察给警车开停车罚单!李双江27岁儿子模样认不出!与57岁梦鸽似姐弟...有些问题过于荒诞,以至于我们要认真对待“视频领域的Midjourney”!AI视频生成新秀Gen-2内测作品流出,网友直呼太逼真“灰色强奸”有多可怕?亲身经历者:就连自己都没意识到那是强奸娱圈教父贪8751亿被通缉后,他最关照的女艺人突然爆胖到认不出了…秦昊这次的变脸更认不出来了男生636分考上清华大学,毕业多年却连自己都无法养活?修不修图都美 阿Sa、阿娇仙气飘飘走红毯 真的老了…梁家辉谈黄昏恋 老到认不出来 杨千嬅被嫌瘦到要增肥 大吃零食喊满足真实版LOGO,也太逼真了吧?建设性的加拿大多元文化主义总是突然就炸的人,可能藏着自己都不知道的创伤李天一出狱罕见露面,变化太大认不出司机们别上当!旧金山街头惊现大量假停车罚单,以假乱真,教你如何分辨真伪~辨认不出亲人的遗书,他们开始在网络上求助……冯提莫疑似整容:现状酷似大妈,鼻子塌、脸发胖,差点认不出了他呼吁:别抗议,特朗普自己都不当真64岁倪萍消瘦到认不出,终于活成了自己喜欢的样子!新型后遗症!年轻女孩患新冠后认不出父亲:他看起来像个陌生人!中年自鸡天花板:我狠起来自己都怕
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。