Redian新闻
>
完美世界TA谈Stable Diffusion插件,ControlNet、Segment Anything

完美世界TA谈Stable Diffusion插件,ControlNet、Segment Anything

游戏

「 点击上方"GameLook"↑↑↑,订阅微信 」

在过去一年里,AI绘图的能力几乎是在以月为单位迅速进步、发展,游戏行业自然也抓住了这一机遇,大小游戏公司都在研究如何利用AI技术提高效率,降低游戏研发的成本。

而由StabilityAI发布的Stable Diffusion模型,因其开源、可商用等特点,自然也在游戏研发等商业场景中备受青睐,开源也为Stable Diffusion当下繁荣的社区提供了先决条件。

在近日亚马逊云科技举办的2023游戏开发者大会上,来自完美世界移动项目中台技术美术主管Gary Guo就围绕Stable Diffusion,讲述了该工具在游戏资产管线上的应用,并分享了自己觉得好用的两个Stable Diffusion插件。

由于Gary Guo此次的分享与其今年3月底在微软“GDC 2023中国行—予力游戏赋能开发”大会上的分享,内容上有重合的部分,本文仅包含了其最后插件分享部分的内容,前半部分的内容可以前往GameLook之前发布的文章《完美世界TA分享:AIGC如何助力游戏开发,从业者如何适应新环境?》中查看。

以下是完美世界技术美术总监Gary Guo关于SD插件演讲实录:

Gary Guo:大家好,我叫郭帆,是完美世界技术动态的TA主管。今天给大家分享一下Stable Diffusion,也就是最近大火的开源的绘画模型,在游戏资产管线中开发的应用。

Stable Diffusion是亚马逊深度支持的一个模型,包括StabilityAI官方,他们其实是在亚马逊的云上去部署了整个渲染的管线。

其实我们在用的过程中,尝试了很多的插件,这也是Stable Diffusion的特点:一是开源,二是它的效果足够好。这种情况必然会推动整个社区的繁荣,所以有非常多的SD插件可以使用。

    ControlNet

如果大家有用过SD的话,应该自己经常会用到一些插件,包括我们跟StabilityAI聊的时候,他们也分享了一个有意思的事情,就是ControlNet的那个插件,允许用户做可控性的尝试,其实SD官方他们自己做过,但没多少人用。

SD官方一直在想用大模型来解决一些控制上的问题的时候,来自社区ControlNet插件却已经弯道超车,他们用额外的一些针对不同领域的,比如说描边,法线等预处理模型,然后再加上他们自己对应的处理叠加的模型,在不改大模型的情况下,就做到了很大程度上的可控性,这个其实对于StabilityAI有着很大的启发。

官方其实之前可能是路径依赖,就是想用大模型来解决这些问题,但实际上不需要用那么重的方式去做。从这一点能看出社区对整个Stable Diffusion的贡献。

这边分享我认为是比较好的两个SD插件,整个社区肯定还有非常多好的插件,但篇幅的原因就不展开了。

第一个就是ControNet,它本身是一个超大的方案合集,里面有各种各样的,有姿势,有描边,还有用法线来做参考。

这个模型其实已经出到了1.1版本,应该是最新的,比较重大的更新就是对整个OpenPose做了集成和优化,通过姿势还有面部的识别,最后的结果就是SD在做多人的时候比之前更好。

这是个尝试,左边是原图,然后我用ControlNet去做骨骼的OpenPose的提取,之后再用Pose来做对应的图的生成,你会发现他在多人的情况下有非常大的进步,原来你做多人其实挺麻烦的,默认其实是完全画不出来的,全部糊在一起,根本没法分辨人群,包括手的姿势也肯定是会多种多样的。

虽然现在这个手的姿势还是有问题的,一是跟图的精度有关,二是他确实可能会有些问题,但能看到他其实很少出现像以前那种特别扭曲的情况,这就是因为有了Openpose的限制。

ControlNet本身除了这个以外其实还有很多,比如说Tile、模型以及一些。新的更新,大家可以去官方网站上看一下。

也是用同样的方式做多人的合成。你会发现他对人体的结构其实还原得非常准确了,当然细节还是有些问题,但对比两个月前的SD,其实已经迈了一大步。

同样也是用的类似的方法。你会发现识别的模型本身其实对图的精度要求也很高。我们尝试在用Controlnet和OpenPose做的时候,这种其实是反面案例,这会导致模型对很多姿势识别的都有问题,主要原因是关节的位置非常黑,模型其实分辨不出来关节的位置和朝向。

第二,最好用写实的人的照片。因为他原来训练的素材其实就是大量的人的照片和姿势。如果你想要自己拍一张作为参考,就需要穿一些颜色比较鲜艳,不是太纯色的服装,比如灰色或者是白色的裤子,颜色需要稍微亮一点,像素稍微能够可识别一点。

当然还可以直接买一些姿势的参考包,作为原画和建模,其实应该有很多这种人体姿势的参考。

这种参考图为了让参考人看得更清晰,他其实会特意地去穿紧身的灰色素衣,甚至有些完全就属于半裸体的状态。这种情况下模型对于人的关节的识别是非常准确的,所以建议大家尝试去做一个自己姿势的参考包。

还有个思路,做这种姿势参考的时候,你其实可以用3D软件,Blender里就有快速调整姿势的一些插件,你可以快速地把想要的姿势摆出来。

    Segment anything

第二个非常推荐的插件就是Segment anything。这个其实最近推出不久,是Meta开源的一个模型。这个模型本身其实性能非常强,大家应该也关注过。

官网:https://segment-anything.com/demo

模型下载地址:
https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth
安装路径:stable-diffusion-webui/extensions/PBRemTools/models

那它怎么去用的呢?

他其实要配合的是ControlNet或者inpaint,inpaint是Stable Diffusion内置的一个功能,叫做绘制/重绘。那他怎么配合呢?

以前如果你想重绘这个肩甲、重绘这个手,那你可能得用inpaint把这个地方涂出来,因为inpaint需要一个Mask(遮罩)的,告诉他哪个地方需要重绘,哪个地方不用重绘。

以前你在做这一部分的时候,你要把这张图拆开,其实是非常麻烦的,可能需要把它导到ps里面,然后再用ps去沿着边缘抠图。你在抠图的时候有多难受,你在用inpaint的时候,想精确地控制就有多难受。

Segment anything本身就是解决这样一个问题的,它可以快速地把你想要切割的部分分割出来。

具体的话,我这边有个案例,就比如我们想把这个肩甲给拆出来,Segment anything搭配Inpaint的Mask,我们其实只需要点击一下肩部的两个地方,它就会把这个地方快速地拆出来。

最后你再把拆除的地方配上关键词,比如我们给他换个颜色,可以让他去重画这一部分。

Segment anything本身其实就是一个非常好的插件了,配合ControlNet也是能够做出更多更可控的部分。比如说我想把脸重画一点,甚至Segment anything配合它插件自带的功能,你可以直接输入关键词face,他可以帮你把所有的脸部提取出来,你可以输入裙子,他可以帮你把裙子全部提取出来。

它实用性对于美术来讲,其实就已经非常的好用了,你可以甚至在它的底层技术上做一些简单的开发,让能够快速地把所有的元素拆解到不同的图层里,也非常容易实现。

这样的话,使用ControlNet做一些大的控制,然后配合Segment anything做一些细节的控制,加起来,你其实是能够对AI的结果有一些比较可控的把握。

今天给大家分享的主要内容就是这些,整个Stable Diffudion在美术资产方面的一些应用、一些定制化的模型资产的产出、气氛参考以及做一些可控性,这些其实都是非常值得探索的内容。

谢谢亚马逊的邀请,有问题的话,我们之后再有机会再沟通。

····· End ·····




GameLook每日游戏产业报道

全球视野 / 深度有料

爆料 / 交流 / 合作:请加主编微信 igamelook

广告投放 : 请加 QQ:1772295880

      长按下方图片,"识别二维码" 订阅微信公众号

····· 更多内容请访问 www.gamelook.com.cn ·····

Copyright © GameLook® 2009-2023


        觉得好看,请点这里 ↓↓↓ 

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
Young Chinese Love Everything About Sweden. Except Living There.PANet、DANet、FastFCN、OneFormer…你都掌握了吗?一文总结图像分割必备经典模型(三)逼真复刻「完美中国情侣」!加强版Stable Diffusion免费体验,最新技术报告出炉FCN、ReSeg、U-Net、ParseNet、DeepMask…你都掌握了吗?一文总结图像分割必备经典模型(一)摩西西去 魂归何处MDNet、SiamFC、ADNet、CFNet、LSTM(RNN)…你都掌握了吗?一文总结目标追踪必备经典模型(一)恭喜Boston College学员斩获BlackRock (US) 2023暑期实习OfferHoliday Hustle: Most Resent Trading Weekends for Time Off推理效率比ControlNet高20+倍!谷歌发布MediaPipe Diffusion插件,「移动端」可用的图像生成控制模型早春与爱犬凉台相坐MGM、MolGPT、PAR、Uni-Mol、K-Bert、MolCLR…你都掌握了吗?一文总结生物制药必备经典模型(三)号称业界最强!Meta发布全新文生图模型,实力碾压Stable Diffusion、Midjourney老烟记事(342) 元宝Want To Use the Toilet? Throw Away Your Trash First.SiamRPN、SiamMask、UpdateNet、SiamAttn…你都掌握了吗?一文总结目标追踪必备经典模型(二)Midjourney、Stable Diffusion 齐更新,最强 AI 画图工具大战|Hunt Good 周报ControlNet新玩法爆火!画出可扫码插画,内容链接任意指定!Tipping Livestreamers ‘Out of Control’: China State BroadcasterThe Ultimate College Panel | Get In and Stand Out in Top Schools​Segment-and-Track Anything!视频版SAM来了,分割/跟踪/编辑一切,现已开源!恭喜Boston College学员斩获BlackRock (US)暑期实习OfferStable Diffusion公司重磅开源大语言模型StableLM,又爆火了!完美世界TA分享:AIGC如何助力游戏开发,从业者如何适应新环境?一文搞懂TCP、HTTP、Socket、Socket连接池凉热How a Hani Designer Is Bringing Ethnic Fusion to Chinese Fashion精选Quant岗位 | SIG、Jane Street、Arrowstreet Capital l等公司持续热招!前TapTap高管黄希威发布Hayo AI应用,融合ChatGPT、Stable Diffusion港大和微软提出Uni-ControlNet:可控制扩散模型再添一员!精通Stable Diffusion画图,理解LoRA、Dreambooth、Hypernetworks四大模型差异Hélène Binet:光的哲学家分割一切后,Segment Anything又能分辨类别了:Meta/UTAustin提出全新开放类分割模型Agustín Hernández:中美洲建筑背景下的未来主义巨构直播预告:基于 Triton Inference Server 部署优化 Stable Diffusion Pipeline(古詩詞英譯)春分二月中 – (唐)元稹
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。