Redian新闻
>
ECCV 2022 | PEBAL:用于城市自动驾驶系统的异常分割模型

ECCV 2022 | PEBAL:用于城市自动驾驶系统的异常分割模型

科技

点击下方卡片,关注“CVer”公众号

AI/CV重磅干货,第一时间送达

点击进入—> CV 微信技术交流群


一句话总结


本文研究如何有效利用abstain learning来有效检测城市自动驾驶系统中经常遭遇的异常物体,其提出PEBAL:一个融合像素级别弃权学习abstention learning 和能量模型的异常/OOD检测系统,性能表现SOTA!代码已经开源!


PEBAL

Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentation on Complex Urban Driving Scenes


单位:阿大 新加坡管理大学

论文:https://arxiv.org/abs/2111.12264

代码:https://github.com/tianyu0207/PEBAL


最近语义分割方法向我们展示了在复杂的城市驾驶场景中精准的像素级别预测, 但这些方法通常不能正确识别出偏离训练中的异常物体。解决这个问题对自动驾驶车辆的道路安全至关重要。比较典型的异常物体可以是道路中间的一块大石头或者是一个野生动物。这些物体因为没有在训练中见过吗,所以会被错误地预测为道路的一部分,从而导致潜在的致命的交通事故。


之前的论文通常依赖于分类不确定性或图像重建去解决城市驾驶道路的像素级别异常检测。但是我们发现这项方法都有各自的问题。比如基于不确定性的方法依据的是当样本接近分类决策边界时,就会出现分类不确定性,但是, 我们往往不能保证所有的异常现象都会接近分类边界。此外,接近分类边界的样本可能根本不是异常点,而只是一些比较难以区分的正常样本。因此,这些基于不确定性的方法可能检测到大量的假阳性和假阴性的样本。例如,这些方法有时会对树木或灌木丛进行错误分类从而错误的产生高不确定性。基于重构的方法通常会增加了一个额外的网络来进行重构。异常像素点则通过输入图像和重构图像的差异来判断。这种方法不仅依赖于对正常物体精确的语义分割而且他们还需要一个额外的重建网络。这使得网络很难训练,而且在实时自动驾驶系统中运行效率很低。此外,每当输入分布发生变化时,这种方法都需要重新训练,从而限制了它们在现实世界系统中的适用性。为了解决这些问题, 我们提出了一种有效的快速的像素级异常检测模型PEBAL。这种新型的模型除了学习正常物体们的语义分割以外的,还直接学习了一个异常像素类别。它是通过联合优化一个新的像素级别的异常弃权学习abstention learning(PAL)和一个像素级别的能量的模型(EBM)来识别异常像素点。最初的弃权学习(AL)是为了学习图像级别的异常类。这在像素级别的异常分割任务中受到了很大的挑战。这是因为最初的AL模型对所有像素的输入都一视同仁,用一个预先定义好的固定惩罚参数来规范异常分类。而在复杂的驾驶场景中,我们通常需要对不同的像素进行不同的惩罚。显然一个固定的惩罚参数是不适合的。例如,小(远)物体的像素点与大(近)物体的像素点都需要不同的惩罚参数。PEBAL旨在通过学习一个自适应的基于能量模型的动态惩罚参数。这样学习到的惩罚参数与EBM共同优化。此外,我们对学习的平稳性和稀疏性进行了限制,将局部和全局的依赖性首次纳入到像素级的异常检测之中。



主要贡献


-We propose the pixel-wise energy-biased abstention learning (PEBAL) that jointly optimises a novel pixel-wise anomaly abstention learning (PAL) and energy-based models (EBM) to learn adaptive pixel-level anomalies. PEBAL mutually reinforces PAL and EBM in detecting anomalies, enabling accurate segmentation of anomalous pixels without compromising the segmentation of inlier pixels。


-We introduce a new pixel-wise energy-biased penalty estimation, which can learn adaptive energy-based penalties to highly varying pixels in a complex driving scene, allowing a robust detection of small/distant and blurry anomalous objects。


-We further refine our PEBAL training, using a novel smoothness and sparsity regularisation on anomaly scores to consider the local and global dependencies of the pixels, enabling the reduction of false positive/negative anomaly predictions.


实验结果


实验结果表明,我们的方法在多个异常分割数据集上明显优于其他网络,并在准确性和效率之间取得了良好的平衡。例如,在 Fishyscapes的公榜上,PEBAL在AP方面的准确度比其他不需要重新训练和添加额外网络的方法分别高10%-40% (LostAndFound)和40% to 50% (Static)。

为了证明我们方法的通用性,我们也测试了利用Resnet101作为backbone的分割模型, 并同样取得了SOTA的结果。


最后我们证明了我们的方法并不受限于outlier exposure (OE)的数量和种类限制, 在极少OE数量和类别的情况下我们也能表现SOTA。




点击进入—> CV 微信技术交流群


ICCV和CVPR 2021论文和代码下载


后台回复:CVPR2021,即可下载CVPR 2021论文和代码开源的论文合集

后台回复:ICCV2021,即可下载ICCV 2021论文和代码开源的论文合集

后台回复:Transformer综述,即可下载最新的3篇Transformer综述PDF


目标检测和Transformer交流群成立


扫描下方二维码,或者添加微信:CVer6666,即可添加CVer小助手微信,便可申请加入CVer-目标检测或者Transformer 微信交流群。另外其他垂直方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch、TensorFlow和Transformer等。


一定要备注:研究方向+地点+学校/公司+昵称(如目标检测或者Transformer+上海+上交+卡卡),根据格式备注,可更快被通过且邀请进群


▲扫码或加微信: CVer6666,进交流群


CVer学术交流群(知识星球)来了!想要了解最新最快最好的CV/DL/ML论文速递、优质开源项目、学习教程和实战训练等资料,欢迎扫描下方二维码,加入CVer学术交流群,已汇集数千人!


扫码进群

▲点击上方卡片,关注CVer公众号

整理不易,请点赞和在看

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
独家丨李彦宏、张一鸣身边的「技术天花板」:廖若雪卷入自动驾驶创业大潮抢跑城市L2自动驾驶,华为亲自带货,极狐能否翻身?自动驾驶,早就应该告别单打独斗了告别 Mobileye 模式,中国自动驾驶玩起「朋友圈」【庭院种菜】丝瓜高产种植的终极指南毛泽东是如何对待《个人崇拜》“这些车的自动驾驶系统太TM糟糕了”农村教师反映,中小学教材内容过于城市化,应当引起重视!自动驾驶商业化进程全球领先,这家中国企业凭什么?职业移民 EB1, EB2(包括 NIW) 和 EB3 的 2017-2022 批准数据拿下跨界C1轮投资,本土Tier 1高阶智能驾驶系统迅速“出圈”从车规级硬件到系统功能安全,什么是自动驾驶「量产门槛」自动驾驶如何走向成熟?丨2022年中国商用车自动驾驶产业发展报告梁春教授:降脂靶标除了传统的LDL-C,你还应该知道ApoB | OCC 2022独家对话沈晖:特斯拉要发展L5级自动驾驶,绕不开激光雷达​SIGIR 2022 | 港大、武大提出KGCL:基于知识图谱对比学习的推荐系统对话清华黄民烈:借用自动驾驶分级定义AI对话系统,元宇宙虚拟伴侣或位于L5「简报」化学大四学生 Frank Hu 获得了匹兹堡分析化学家协会奖;机器人专家开始编制可以用于训练自动驾驶 ATV 的数据特斯拉挑战200万产能:自动驾驶创收还远,制造是核心优势|焦点分析三巨头争霸自动驾驶芯片陆国平教授:口服他汀出现肝功异常,医生该何去何从? | OCC 2022独家|北汽福田秘密筹备自动驾驶子公司,已启动9个相关岗位在美国“上山下乡”的老海归ECCV 2022丨力压苹果MobileViT,这个轻量级视觉模型新架构火了乔治城大学2027届本科生独立申请系统已开放!盘点使用自己申请系统的院校!ECCV 2022 | 港中文MMLab:基于Transformer的光流​CVPR 2022 | 从自注意力中学习语义Affinity,用于端到端弱监督语义分割L3级自动驾驶近了,4D毫米波雷达火了欧美世界三大奢华美食:欧美三珍抢先特斯拉一步,奔驰的自动驾驶可以用了,5000欧元起步,到底是做对了哪3件事?全程无接管,Mobileye城市自动驾驶东京实测收入暴涨14倍,疫情期间这家自动驾驶公司进军全球20城谁在引领2022自动驾驶投融资?L4玩家领骏科技,百度无人车元老创办婦字源考ECCV 2022 | 单点监督目标检测!国科大提出P2BNet:标一个点就能训练出强有力的目标检测器
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。