Redian新闻
>
AI大模型只能沦为“锦上添花”吗?

AI大模型只能沦为“锦上添花”吗?

科技


出品 | 虎嗅科技组
作者 | 齐健
编辑 | 廖影
头图 | 虎嗅

“每个人咨询的第一个问题都是:你们在大模型方面做了什么?”

7月8日,2023世界人工智能大会(下称WAIC),一位参展商告诉笔者他的感受。——“大模型”,无疑是此次大会绕不开的主题。

另一位来自国内大模型创业公司的技术人员在展会上穿梭,她对芯片厂商十分感兴趣,她说他们要做语义大模型,公司拥有1000张英伟达的A100,但算力仍然不够,她希望能在展会上寻找新的机会——算力要强,成本要划算。

为期3天的大会,每场会议都有关于大模型的话题,每个论坛都离不开围绕大模型的讨论,每个展区的工作人员几乎都会被问及大模型技术,甚至一些公司被投资人和股东要求一定要讲大模型。

第一届WAIC举办于6年前,2018年算是AI的上一个历史高点。彼时,人类刚刚见识了AI的“超能力”,AlphaGo刚刚连续战胜了两位人类围棋冠军,全世界对AI的关注持续升温。

今天备受瞩目的OpenAI,也是在2018年推出的第一个版本的GPT模型,但那个时候,GPT模型在行业内甚至没有激起任何水花。

在过去的6年里,由于AI应用落地缓慢,大众以及资本对AI的耐心开始逐渐退潮。

直到ChatGPT的出现,AI大模型使人们对AI重拾期待,也再次点燃了资本对AI技术的热情。本届WAIC开幕之时,这个热潮似乎也正在顶点。

但是在这次展会上大模型更像是一件“皇帝新衣”,“或许很多人都不知道到底能用大模型做什么。”一位芯片公司展商表示,过去三天,好几位产品经理前来咨询,他们希望找到自己的大模型产品的市场定义。

大模型可能包容一切,但暂时还不是一切。”一位参展观众在展会上这样评价。

只是锦上添花

今天市面上的大模型,虽然有很多落地案例,但能创造实际价值的场景并不多,大多是传统数字化转型的附属品,在具体业务中起到提质增效的作用。

星环科技在本届WAIC上展示了两款AI领域大模型产品,一个是金融量化投研大模型“无涯”,一个是大数据分析大模型SoLar“求索”。这两款产品都定位在“智能助手”这个方向上。

“大模型对产品的可用性提升很大,但大模型肯定不是我们产品的全部。”星环科技产品市场经理何韵秋给观众讲解了一下午AI大模型之后发现,观众们的确对AI大模型很感兴趣,但来找她咨询的人,还是更在意大数据技术,包括向量数据库和图数据库,她说:“对于金融数据库有需求的客户,他们本来也会买我们的产品,大模型算是锦上添花吧。

星环科技在2022年发布的年报中称,自己在国内有超过1400家终端用户,主要集中在金融行业。

事实上,对于这些行业客户来说,一项才火了半年的技术,很难在选型过程中被列为参考条件。客户更在意的是平台、软件的功能,供应商的技术实力、服务能力,以及价格。

易用性代表着增加用户对于产品的使用体验,虽然对于企业用户来说也很重要,但这并不能直接创造价值。以金融行业为例,量化投研助手可以帮助投资经理、研究员和分析师提高工作效率,然而,真正提供业务价值的仍旧是底层的量化投研引擎;在制造业中,使用自然语言调用工业软件功能、生成报表、完成知识库内容问答,可以帮助企业提高生产效率,真正提供数据价值的,还是基于MOM(Manufacturing Operation Management,制造运营管理)系统的工厂管理。

虽然基于AI大模型的效率提升很重要,但企业数字化转型的初衷还是要优化整个流程,从而创造价值。不过,AI大模型对于一家技术研发公司来说,也不只是一个小插件。能推出自研大模型的公司,在技术实力上无疑是加分项,星环科技也在5月底就推出了自研AI领域大模型产品。

找到合适的应用场景是目前国内AI大模型行业最迫切的需求。”星环科技创始人孙元浩认为,有些公司很短的时间就发布了AI大模型相关产品,研发能力很强,但这些AI大模型能否找到应用场景,或者在他的场景中能创造多少价值,还需要时间来检验。

别只看大模型

事实上,无论是参展WAIC的公司还是观众大多还是很务实。虽然每个展商都带着大模型来,但他们真正的目标并不一定是大模型,而是用上了AI技术的数字化、智能化产品。

扩博智能在这次WAIC上发布了一款“风机叶片内检机器人”,其主要功能是通过内部观测风机叶片,避免叶片漆面对检测的影响,及时准确地识别缺陷,降低损失和维护成本。


 风机叶片内检机器人

这样一款机器人与AI大模型有结合吗?

机器人还在学!也有人问我们大模型,但不多。”扩博智能风电硬件产品总监柯亮告诉笔者,目前风机叶片的巡检机器人主要的功能是把数据收回来,并帮助工作人员进行分析。但这种分析的精度还不能做到100%,因为数据量太小了,“一个风场的巡检量达到七万台次,但同样的裂痕数据,可能只会出现一次,机器可以学习的数据量还不够。”

人脸识别,或是流水线上的CV质检,都是对有一定共性特征的图像进行学习,但风机叶片有可能产生各种各样的裂痕,所以机器学习的难度很大。

“那是不是可以理解为,风机叶片巡检机器人的主要价值在于机器人,数据智能只是附加价值?”一位现场观众这样问柯亮,他说:“我不太认同这种看法,数据本身就是资产,单纯看眼前,大数据可能是附加价值,但当这些巡检数据长期积累以后,就会形成数据的循环,未来风机叶片巡检也能有足够的数据去训练大模型,也能实现全自动化。

对于风电这样的新兴产业,且本来就不具备数据采集基础,在现阶段谈的AI大模型更多的是如何打好数据基础。

在医疗行业的一些场景中,则可能不需要上亿规模的参数,AI就可以帮助医生快速获得更好的诊断、治疗效果。本次展会上,GE医疗带来的深度学习磁共振重建技术——AIR Recon DL,就是通过440余万的样本和高质量的基础数据,进行深度学习、建模,实现在磁共振影像源头的原始数据进行重建,分离噪声,获得高质量图像。

“这种AI处理技术相比传统的滤波器更保真,因为滤波器会过滤掉有效数据。”GE医疗展台工作人员说,医疗设备中的AI只需要一个不太复杂的AI模型,就可以大幅增强诊疗效果。


 AIR Recon DL深度学习平台图像对比

在与展商、观众的交谈中,很多人都认可这样一句话:从短期来看AI大模型正在被严重高估。但从长期看,AI大模型被严重低估了。

多位业内人士曾向笔者表示,短期来看,虽然AI大模型涌现出了超乎想象的通用能力,但现阶段,大模型仍受到很多因素的制约。算法还有提升的空间,数据还远不够完善,算力甚至正在制约技术发展的速度。

在这个阶段里,盲目地找场景,求利润,其实并不现实,但在大模型风口之下,AI公司们却被迫陪着资本一起飞上天。

“AI公司如果不提大模型,不提生成式AI,就会显得不专业。创业公司,可能会被降低估值,上市公司,则可能会影响市值。”某AI公司展位的工作人员告诉笔者,大模型已经成为了市场的噱头。

如对本稿件有异议或投诉,请联系[email protected]

End

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
大模型只是起点:朝向多智能体和人类紧密协作的未来|戴雨森对话吴翼讯飞华为官宣联手:国产大模型只有基于自主创新算力底座才有大未来中国团队自动驾驶大模型斩获CVPR最佳论文;Stability AI推出新文生图模型;京东大模型即将发布丨AIGC大事日报AI大模型真的引领了国内的“资本盛宴”吗?是,也不是无法爱上别人——就是简单的“自恋”十亿参数,一键瘦身!「模型减重」神器让大模型狂掉3/4 | 最“in”大模型大模型只有"大"一条路吗?刘强东最后一个上牌桌,京东大模型只针对产业甘愿沦为“职场废物”后,我和同事再也没矛盾了GPT-4知道它是不是“胡说八道”吗?一篇关于大模型“自知之明”的研究天选之女!Morley“锦鲤”买彩票作为生日礼物送给自己,竟意外中得百万大奖!阿里达摩院大模型公开课上新!主讲中文个性化对话大模型ChatPLUG和模块化多模态大模型mPLUG-Owl传OpenA正测试DALL·E 3模型;华为语音助手支持AI大模型;亚马逊组建AI大模型新团队丨AIGC大事日报​Broadcom:收购VMware将为其锦上添花谷歌证实大模型能顿悟,特殊方法能让模型快速泛化,或将打破大模型黑箱It’s sick含金量超高的竞赛比赛,为你的美本申请锦上添花|比赛竞赛系列1百度华为阿里等入选大模型“国家队”;盘古大模型3.0发布;阿里云推AI绘画大模型丨AIGC大事日报史上最低5.1分,《小美人鱼》被骂惨,只是因为“丑”吗?商业街区沦为“僵尸区”,设计师:我早猜到了结局!AI 模型只能部署在云端?高通白皮书发布:混合 AI 是 AI 的未来章鹏:大模型只是少数人的机会,小模型才是大多数人的机会Pierce Brosnan/Tai-Pan the chief of the \'Noble House\'锦上添花——阿提哈德航空 EY 150 芝加哥-阿布扎比 (ORD-AUH) A350-1000 全新商务舱体验大模型可以摆脱落地难的问题吗?InfoQ 大模型技术应用创新大赛正式开启!坚持做行业大模型,竹间智能给大模型造了一座「模型工厂」为了你走遍草原 第十四章成都为什么叫“锦城”沈向洋周明杨格大模型激辩:继续爆堆参数,大模型能出现新的「智能涌现」吗?回国:母校发秀,欧洲校友只给大模型LeetCode编号,也能解题!大模型表现好是源于对训练数据的记忆吗?请不要迷信大模型精明消费指南:从“有钱花”到“没白花、值得花”共享单车沦为“移动广告位”:一天撕一两千张大模型变“小”:黑马天启开创AI模型“重度垂直”新思路,入选北京大模型行业应用典型案例国内大模型争霸赛,你最看好哪家?这是你心目中的大模型排名吗?
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。