Redian新闻
>
揭秘短视频推荐系统的技术架构及四大模块

揭秘短视频推荐系统的技术架构及四大模块

科技

导读:推荐系统的基础原理。


作者:张哲
来源:大数据DT(ID:hzdashuju)




01 推荐系统技术架构

下面来看下短视频社区平台的推荐系统架构是如何划分的,由底层往上分别是日志信息层、模型策略层、数据计算层、数据结果层与用户交互层,如图2-5所示。

▲图2-5 推荐系统技术架构

1. 日志信息层

该层主要分为两部分,一部分是静态数据,例如用户数据与内容数据,用户的年龄、性别、地区,稿件内容的标题、时长、作者,在很长一段时间内都是固定数据,系统每天取其增量存入日志信息层;另一部分是行为数据,例如推荐请求日志,记录哪些内容曝光给了哪些用户;推荐点击日志,哪些用户点击了哪些内容;用户浏览时长日志信息、用户LBS地点信息等等。

2. 模型策略层

该层主要是决定采取何种模型、策略来分析与解读日志信息层的静态数据和行为数据,例如在召回阶段是更多地进行热门内容召回,还是根据用户行为进行协同过滤的召回;在排序阶段采用何种机器学习模型来进行精排等策略。

3. 数据计算层

该层是基于模型策略层定下召回排序策略和模型后,采取离线大规模计算与在线实时计算两种方式,计算出模型训练的结果。离线计算是由于机器数量与性能的限制,大量数据需要采取离线方式计算出结果,在线计算是针对线上用户的实时反馈行为,系统快速做出回应,改善用户体验。

4. 数据结果层

该层作用是在不同数据应用系统中存储数据计算层得出的相应计算结果,例如用户画像与内容特征可以存储在ElasticSearch(搜索数据库)中,因为这些数据只需要批量查询读取;而用户行为数据则需要存储在Redis(内存应用)中,方便快速响应前端界面的用户反馈。

5. 用户交互层

该层的交互逻辑分为两部分,第一部分是展现由各层最终计算出的推荐结果给用户,第二部分是记录用户对于推荐结果的反馈行为,例如浏览行为(时长/路径)、点击行为(点击哪些内容/完播率等)、负反馈行为(不感兴趣/投诉等不同程度的负反馈)。


02 推荐系统四大模块

基于以上描述,我们了解了推荐系统技术架构的整体框架,但还是给人感觉太复杂、太技术范儿了。归根结底来说,推荐系统要做的不就是从海量内容库里选出几十个用户可能感兴趣的优质视频吗?我们将推荐系统抽象成一个信息过滤系统,分为审核、召回、排序、规则四个模块,层层递进地过滤内容,如图2-6所示。

▲图2-6 推荐系统技术架构简化

  • 审核模块将符合短视频社区规则与价值观的视频过滤出来,输出量级大致在百万左右;
  • 召回模块将根据用户行为与热门等规则,快速找到一小部分优质内容,输出量级大致在十万左右;
  • 排序模块分为粗排与精排,采用比较复杂的模型,融入较多特征,输出量级在百个视频数量左右;
  • 规则模块,也叫ReRanker(重排序)模块,会在排序模块结果的基础上附加人工干预、规则限制等,最终将结果呈现给用户,输出结果在几十个左右。

本文摘编自短视频社区:产品、运营与商业化》(ISBN:978-7-111-70525-3),经出版方授权发布。


短视频社区:产品、运营与商业化
点击上图了解及购买
转载请联系微信:DoctorData

推荐语:头部短视频平台产品总监撰写,在百度、阿里经验总结,平台视角剖析短视频社区产品架构、运营方案、商业变现。

关于作者:张哲,某头部短视频平台商业产品总监,具有技术背景,商业化广告产品方面的专家。曾在百度大商业、阿里巴巴淘系事业部从事产研方向工作,在广告、搜索、推荐等领域都有一定的积累。同时也具有丰富的大厂商业变现实战项目经验,曾主导公司内部的效果广告与品牌广告基础能力建设项目,也在持续探索广告营销如何与内容深度结合等业务创新方向。


刷刷视频👇

终于有人把知识图谱的三要素讲明白了

关注数据叔视频号,看更多干货视频👇


干货直达👇


更多精彩👇

在公众号对话框输入以下关键词
查看更多优质内容!

读书 | 书单 | 干货 | 讲明白 | 神操作 | 手把手
大数据 | 云计算 | 数据库 | Python | 爬虫 | 可视化
AI | 人工智能 | 机器学习 | 深度学习 | NLP
5G | 中台 | 用户画像 数学 | 算法 数字孪生

据统计,99%的大咖都关注了这个公众号
👇

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
5年4胎,新加坡女警曝光警察系统的"职场歧视"首次入选OSDI顶会!腾讯提出超大规模推荐系统的模型低延时更新方案加州被指对受污染水系统的修复速度太慢7月30号|来一场手把手助您打造智能视觉新爆款的技术训练营苹果华为“捅破天”的技术,要带起6万亿市场与王朝阳院士聊了聊:从汽车到飞行器,电池未来需要怎样的技术特性? | 【经纬科创汇*动力电池】六年指纹识别的技术长跑——vivo这件难而正确的小事从机器学习到推荐系统,技术平台全面统一:火山引擎已经发动从 OpenCloudOS 的演进之路,看国产开源操作系统的突围与进阶语雀桌面端技术架构实践“弹幕”版四大名著,妙人妙语带你领略四大名著之精妙集业界最优资源,SAIC AI LAB 2.0技术架构如何将Robotaxi量产变为可能?书单 | “推荐系统” 值得一读的五本书疫情两年后欧洲三国游 (1)-计划与行程​SIGIR 2022 | 港大、武大提出KGCL:基于知识图谱对比学习的推荐系统顶尖咨询公司的技术岗位,面试是怎样的?全国摘星、各地解绑,景区频推优惠政策!夏天就要奔赴山川湖海!流量“卷翻”抖音,视频号重新定义中国短视频FBI:中期选举前尚未发现针对美国选举系统的可信威胁七牛云音画质量分析系统的行业前瞻基于互联网架构演进, 构建秒杀系统未去黄泛区农场之前, 真的没想到那儿的生活不但比农村, 甚至比很多城市都好我国科学教育中的技术思维陷阱操作系统的下一次跨越式发展将是量子计算|独家专访SUSE首席技术与产品官ThomasWSDM 2022最佳论文候选:港大提出多行为对比元学习的推荐系统知青进城和李向阳进城的不同美国Open RAN先锋企业大规模裁员!曾经号称颠覆行业的技术路线将走向何方?凤姐的冤屈难诉与作祟的嫌隙人们清理 Ubuntu 系统的 4 个简单步骤 | Linux 中国SIGIR 2022 | 港大等提出超图对比学习在推荐系统中的应用在谷歌刚发布的安卓13里,我又找到了华为的技术。。。不拥枪不是美国人架构自治服务:构建数据驱动的架构洞察小儿麻醉给药系统的历史ECCV 2022 | PEBAL:用于城市自动驾驶系统的异常分割模型
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。