「教科书级」数据能有多大作用?微软超强小模型引热议公众号新闻2023-09-14 04:09机器之心报道编辑:小舟随着大模型掀起新一轮 AI 热潮,人们开始思考:大模型的强大能力来源于什么?当前,大模型一直在由不断增加的「大数据」来推动。「大模型 + 大数据」似乎已经成为构建模型的标准范式。但随着模型规模和数据量的不断增长,算力的需求会迅速膨胀。一些研究者尝试探索新思路。6 月,微软发布了一篇题为《Textbooks Are All You Need》的论文,用规模仅为 7B token 的「教科书质量」数据训练了一个 1.3B 参数的模型 ——phi-1。尽管在数据集和模型大小方面比竞品模型小几个数量级,但 phi-1 在 HumanEval 的 pass@1 上达到了 50.6% 的准确率,在 MBPP 上达到了 55.5%。phi-1 证明高质量的「小数据」能够让模型具备良好的性能。最近,微软又发表了论文《Textbooks Are All You Need II: phi-1.5 technical report》,对高质量「小数据」的潜力做了进一步研究。论文地址:https://arxiv.org/abs/2309.05463模型简介架构研究团队使用 phi-1 的研究方法,并将研究重点放在自然语言常识推理任务上,创建了拥有 1.3B 参数的 Transformer 架构语言模型 phi-1.5。phi-1.5 的架构与 phi-1 完全相同,有 24 层,32 个头,每个头的维度为 64,并使用旋转维度为 32 的旋转嵌入,上下文长度为 2048。此外,该研究还使用 flash-attention 进行训练加速,并使用 codegen-mono 的 tokenizer。训练数据phi-1.5 的训练数据是由 phi-1 的训练数据(7B token)和新创建的「教科书质量」数据(大约 20B token)组成的。其中,新创建的「教科书质量」数据旨在让模型掌握常识推理,研究团队精心挑选了 20K 个主题来生成新数据。值得注意的是,为了探讨网络数据(LLM 常用)的重要性,该研究还构建了 phi-1.5-web-only 和 phi-1.5-web 两个模型。研究团队表示:创建强大且全面的数据集需要的不仅是原始计算能力,还需要复杂的迭代、有效的主题选择,以及对知识的深入了解,具备这些要素,才能确保数据的质量和多样性。实验结果对于语言理解任务,该研究在多个数据集(包括 PIQA、Hellaswag、OpenbookQA、SQUAD 和 MMLU)上评估了一些模型。评估结果如下表 3 所示,phi-1.5 的性能可以媲美 5 倍大的模型:在常识推理基准上的测试结果如下表所示:在更复杂的推理任务(例如小学数学和基础编码任务)上 phi-1.5 还超越了大多数 LLM:研究团队认为,phi-1.5 再次证明了高质量「小数据」的力量。质疑与讨论或许是因为「大模型 + 大数据」的理念太深入人心,这项研究遭到了机器学习社区一些研究人员的质疑,甚至有人怀疑 phi-1.5 直接在测试基准数据集上训练了。网友 Susan Zhang 进行了一系列验证,并指出:「phi-1.5 能够对 GSM8K 数据集中的原问题给出完全正确的回答,但只要稍微修改一下格式(例如换行),phi-1.5 就不会回答了。」还有修改问题中的数据,phi-1.5 在解答问题的过程中就会出现「幻觉」。例如,在一个点餐问题中,只修改了「披萨的价格」,phi-1.5 的解答就出现了错误。并且,phi-1.5 似乎「记住了」最终答案,即使在修改数据的情况下该答案已经是错误的。对此,论文作者之一 Ronen Eldan 很快给出了回应,针对上述网友测试出现的问题给出解释和反驳:但该网友再次阐明其观点:测试说明 phi-1.5 的回答对 prompt 的格式是非常「脆弱」的,并对作者的回应提出质疑:论文第一作者 Yuanzhi Li 回应道:「由于没有进行任何指令微调和对齐工作,phi-1.5 在稳健性上的确不如 GPT-4。但『脆弱』并不是正确的术语,事实上,对于任何模型,pass@k 准确率都会比 pass@1 高得多(所以模型正确就是偶然的)。」看到这些质疑与讨论,网友们直呼:「最简单的回应方式就是直接公开合成数据集。」对此,你怎么看?参考链接:https://twitter.com/suchenzang/status/1701615026648605095© THE END 转载请联系本公众号获得授权投稿或寻求报道:[email protected]微信扫码关注该文公众号作者戳这里提交新闻线索和高质量文章给我们。来源: qq点击查看作者最近其他文章