Redian新闻
>
GPT-4野生代言人陶哲轩:搞论文学新工具没它得崩溃!11页“超简短”新作已上线

GPT-4野生代言人陶哲轩:搞论文学新工具没它得崩溃!11页“超简短”新作已上线

公众号新闻
丰色 发自 凹非寺
量子位 | 公众号 QbitAI

陶哲轩有多爱GPT-4?

这回,不止写论文做研究,学新工具时他也离不开它了。

就在今天,他的又一篇成果上线,关于麦克劳林不等式。

为了更好地展现其成果,48岁的他开始学习Lean4(一种可作为交互式定理证明工具的函数式编程语言)

他自述,随着学习该语言“关卡难度”的增加,GPT-4又能帮大忙了——

如果没有它帮我解决各种微妙的语法问题,你都无法想象我有多崩溃。

不愧是GPT-4的“野生代言人”

至于这次的论文,陶哲轩表示:

非常简短,只有11页。并且用到的方法非常基础,只需要本科的微积分和多项式知识就可以。

一起来看看

麦克劳林不等式

这篇论文10月10日发表,距离上一篇“欧拉函数的单调非递减序列”差不多正好一个月。

总的来说,这篇论文主要讲的是经典麦克劳林不等式认为初等对称为以下形式(公式1)


当1≤k≤ℓ≤n且y=(y1,…,yn)由非负实数组成时,它服从不等式(公式2)

在此,陶哲轩提出了一个变体(公式3)

在这个变体中,yi被允许为负。

在这种情况下,不等式“急剧上升”为常数,即使分母不含k1/2因子不等式也是已知的。

具体而言,陶哲轩写道:

公式2也可以被用牛顿不等式来证明:

所有1≤k<n和任意实数y1,…,yn有效(特别是这里的yi被允许为负数。</n和任意实数y1,…,yn有效(特别是这里的y

但是请注意,当k=1,n=2时,它就是算术平均-几何平均不等式了:

这种不等式的一般情况可以通过许多标准操作从上面这种特殊情况中推导出来。

为什么可以?这主要归功于罗尔定理(Rolle’s theorem)

但陶哲轩指出,关键点是是该运算保留了直到Sn-1为止的所有基本对称均值。

接下来,我们可以将麦克劳林不等式视为提供n变量上的算术平均-几何平均不等式的改进版本(当k=1,ℓ=n时)

不过,牛顿不等式适用于任意实数yi ,一旦允许一个或多个yi为负,麦克劳林不等式就会“崩溃”

但鉴于当n为偶数时会出现一个关键示例:yi的一半等于+1,一半等于-1。

我们就可以验证基本对称均值sk中当k奇数时“消失”,为偶数时则等于:

特别地,一些常规估计可以得出量级界限(公式a)

问题又来了,由于当0<k≤n上式也成立,因此即使在sk(y)上加上绝对值之后仍然严重违反了麦克劳林不等式。</k≤n上式也成立,因此即使在s

另一方面,其他数学家还观察到,如果两个连续值都很小,这会导致所有后续值s(y)也很小。

还有另一数学家观察到了这一说法的更精确版本(公式b)

其中1≤k≤ℓ≤n且y=(y1,…,yn)为实数(但可能为负)

假设k=1,ℓ=n,我们就能得到不等式:

再结合算术平均数-几何平均数不等式又可以成立不等式:

以及等式:

与牛顿不等式的证明一样,公式b的一般情况可以通过一些标准操作(包括前面提到的微分运算)从这个特殊情况得到。

然而,如果对照关键示例给出的边界a (公式a) 检查边界n (公式b),我们会发现不匹配:

在k1/2的影响下,b的右侧比左侧大。

在此,论文的主要成果就是通过建立最佳修改(直至常数),即前面提到的公式3来纠正这一问题。

这个成果也回答了数学网站MathOverflow上网友提出的疑问:

那么陶哲轩是如何解决的呢?

与前面的论点不同,他在这里不主要依赖算术平均数-几何平均数不等式。相反,主要工具是新的不等式:

它对所有1≤ℓ≤n和r>0有效。

该式子的证明大家如果感兴趣可以进一步查阅博客或论文,主要涉及一些微积分、二项式定理和多项式的知识。

论文地址:
https://arxiv.org/abs/2310.05328 

参考链接:
https://terrytao.wordpress.com/2023/10/10/a-maclaurin-type-inequality/(博客) 
https://mathstodon.xyz/@tao

「量子位2023人工智能年度评选」开始啦!

今年,量子位2023人工智能年度评选从企业、人物、产品/解决方案三大维度设立了5类奖项!欢迎扫码报名 

MEET 2024大会已启动!点此了解详情


点这里👇关注我,记得标星哦~

一键三连「分享」、「点赞」和「在看」

科技前沿进展日日相见 ~ 

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
玩具没有品牌只有IP?综合实力席卷全球,TGA上它得奖,值得!这一身出镜就被问链接,当了四年的免费野生代言人....红色日记 9.11-20狗子四肢瘫软不停咳嗽,主人以为它得了绝症哭着送去医院,结果…哈哈哈!陶哲轩新论文:部分证明著名素数猜想,新方法用到了自己的旧模型陶哲轩论文漏洞竟被AI发现,26年预言要成真!看定理名猜出研究方向,大神直呼AI能力惊人陶哲轩用大模型辅助解决数学问题:生成代码、编辑LaTeX公式都很好用外交部证实:李强同拜登进行简短交流GPT turbo 看了没?!这真是大批失业人员在路上。GitHub Copilot让陶哲轩感到“不安”对待日本人的态度着实有看头的,还就只有鲁迅和张爱玲。庄子与屈原,你会选择谁的人生?陶哲轩:我用GPT-4辅助证明不等式定理,论文还会上传arXivAI颠覆数学研究!陶哲轩借AI破解数学猜想,形式化成功惊呆数学圈陶哲轩发新论文了,又是AI帮忙的那种陶哲轩:初学者不宜用AI工具做专家级任务,GPT对专家帮助不大ChatGPT全线大崩溃!奥特曼亲自致歉:流量远超预期每周硅闻 | 突发!又一公司裁员;亚马逊与Meta结盟;ChatGPT全线大崩溃!陶哲轩再逼近60年几何学难题!周期性密铺问题又获新突破陶哲轩疯狂安利Copilot:它帮我完成了一页纸证明,甚至能猜出我后面的过程真香!陶哲轩:用ChatGPT写代码太省时间了!外交部发言人:中国经济没有崩溃,反倒是“中国崩溃论”屡屡崩溃大模型落地最后一公里:111页全面综述大模型评测「陶哲轩×GPT-4」合写数学论文!数学大佬齐惊呼,LLM推理神助证明不等式定理崩溃!多伦多大学新生吐槽:每天只睡4h!北美宁古塔难道是真的!陶哲轩上手Copilot:不可思议,它能从定理名字猜出我想要的方向陶哲轩支持!AI奥林匹克数学奖来了,奖金500万美元,寻找能得IMO金牌的大模型把LLM视作操作系统,它就拥有了无限「虚拟」上下文,伯克利新作已揽1.7k star时间的湾 1GPT-4成功得出P≠NP,陶哲轩预言成真!97轮「苏格拉底式推理」对话破解世界数学难题chat gpt 怎么上不去了? 彻底罢工了乔治城大学新增STEM项目!美国TOP30大学新增学院&专业大盘点!陶哲轩又来安利AI工具了:新论文排版用上VSCode Copilot+插件陶哲轩:用 ChatGPT 写代码太省时间了2008春 欧洲印象 4 米兰陶哲轩:GPT-4神助攻,写Python代码轻松省半小时带你出去晒太阳
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。