Redian新闻
>
​SIGIR 2024 | 显式且细粒度的建模!属性-观点驱动的细粒度序列推荐

​SIGIR 2024 | 显式且细粒度的建模!属性-观点驱动的细粒度序列推荐

公众号新闻
©作者 | 张晓堃
单位 | 大连理工大学·信息检索研究室
研究方向 | 推荐系统

论文标题:

FineRec: Exploring Fine-grained Sequential Recommendation

收录会议:

SIGIR 2024

论文地址:

https://arxiv.org/abs/2404.12975

代码地址:

https://github.com/Zhang-xiaokun/FineRec

给大家分享我们在 SIGIR 2024 上录用的一篇关于序列推荐(sequential recommendation)的论文,论文已在 arXiv 上公开,代码也以上传 github,欢迎大家关注!



Motivation 研究动机

序列推荐(Sequential Recommendation)致力于根据用户的历史行为记录为其提供个性化推荐服务。与传统推荐方法不同,序列推荐专注于处理用户行为的时序特点,即建模用户随时间变化的偏好。这使得序列推荐能够捕获用户变化的兴趣,并据此及时地为用户提供个性化服务。由于具备巨大的实用价值,序列推荐近年来受到学术界和工业界的广泛关注。
现有的序列推荐方法依赖于神经网络来获得商品和用户的嵌入表示,并基于这些嵌入表示之间的相似性,形成个性化推荐列表。大多数工作致力于建模用户的隐式行为,如浏览、点击等交互行为,从用户的隐式行为中捕获用户偏好及商品特征,以提供个性化推荐服务。这些方法应用了多种神经网络架构来建模用户的隐式行为,包括循环神经网络(RNN),注意力机制和图神经网络(GNN)等。
然而,用户的隐式行为通常存在噪声,这降低了这些模型的性能表现。如上图中(a)所示,用户的意外点击形成了噪声,导致模型无法准确地建模用户行为而产生了偏离用户兴趣的推荐结果。
此外,一些方法提出引入用户-商品评论文本来处理序列推荐任务,因为评论文本显式地表达了用户对商品的具体态度。然而,这些方法都将用户-商品评论粗粒度地视为一个整体来建模,忽视了用户在单个评论中可能对商品不同属性存在着不同的观点。如上图中(b)所示,囿于粗粒度地建模一整个评论文本,这些方法无法辨别用户对商品特定属性的细粒度偏好,这极大地限制了它们的有效性。
实际上,在用户-商品评论中,用户以属性-观点对的形式表达其对商品的具体偏好。这些属性-观点对以显式且细粒度的方式揭露了用户偏好并刻画了商品特征,为提高推荐算法的性能提供了新的视角。

如上图中(c)所示,通过分析用户-商品评论中特定的属性-观点对,系统可以向先前表达不喜欢紧身服装的用户推荐宽松的衣服。其中,系统推荐的商品的宽松特点是其他用户对该商品的评价。显然地,这种方式有助于提高推荐系统的性能表现。因此,本文对评论文本中的属性-观点对进行了探索,以此来细粒度地处理序列推荐任务。



Approach提出方法FineRec
本文提出了属性-观点驱动的细粒度序列推荐模型 FineRec,利用用户-商品评论中的属性-观点对来细粒度地处理序列推荐任务。FineRec 的模型图如上图所示,其主要由以下模块组成:
(1)基于大语言模型的属性-观点抽取模块。FineRec 利用具备丰富语言知识的大语言模型(LLM)从用户-商品评论中抽取高质量的属性-观点对。
(2)细粒度表示学习模块。FineRec 通过探索属性-观点对获得细粒度的用户和商品嵌入表示。具体地,FineRec 在每个属性下创建了一个特定属性的用户-观点-商品图,并设计了一种多样性感知的卷积操作在这个图上进行信息聚合,以学习每个属性下细粒度的商品和用户表示。
(3)交互驱动的融合机制。FineRec 利用用户-商品之间的交互信息融合不同属性下的商品及用户嵌入表示,以获得综合的商品和用户嵌入表示。
(4)预测模块,基于学习到的用户和商品表示,FineRec 以细粒度的方式为用户形成个性化推荐列表。

更多模型细节,包括每个数据集下使用的属性列表,请参考我们的代码及论文原文。



Performance 模型表现

FineRec 和所有基线模型在四个真实数据集下的表现如上表所示。由表可知,FineRec 在所有数据集的所有评价指标上均大幅优于所有基线方法, 这证明了  FineRec 在序列推荐任务上的有效性。
我们认为 FineRec 相较于当前最先进方法的一致的优越表现源自于其细粒度处理序列推荐任务的方式。通过利用属性-观点对来细粒度地表示用户和商品,FineRec 能够识别各种属性上的细粒度用户偏好和商品特征。这种方式极大地增强了模型对用户意图的理解,进而显著地提高了模型对用户行为预测的准确度。

更多实验结果及分析请参考我们的论文原文。


更多阅读



#投 稿 通 道#

 让你的文字被更多人看到 



如何才能让更多的优质内容以更短路径到达读者群体,缩短读者寻找优质内容的成本呢?答案就是:你不认识的人。


总有一些你不认识的人,知道你想知道的东西。PaperWeekly 或许可以成为一座桥梁,促使不同背景、不同方向的学者和学术灵感相互碰撞,迸发出更多的可能性。 


PaperWeekly 鼓励高校实验室或个人,在我们的平台上分享各类优质内容,可以是最新论文解读,也可以是学术热点剖析科研心得竞赛经验讲解等。我们的目的只有一个,让知识真正流动起来。


📝 稿件基本要求:

• 文章确系个人原创作品,未曾在公开渠道发表,如为其他平台已发表或待发表的文章,请明确标注 

• 稿件建议以 markdown 格式撰写,文中配图以附件形式发送,要求图片清晰,无版权问题

• PaperWeekly 尊重原作者署名权,并将为每篇被采纳的原创首发稿件,提供业内具有竞争力稿酬,具体依据文章阅读量和文章质量阶梯制结算


📬 投稿通道:

• 投稿邮箱:[email protected] 

• 来稿请备注即时联系方式(微信),以便我们在稿件选用的第一时间联系作者

• 您也可以直接添加小编微信(pwbot02)快速投稿,备注:姓名-投稿


△长按添加PaperWeekly小编



🔍


现在,在「知乎」也能找到我们了

进入知乎首页搜索「PaperWeekly」

点击「关注」订阅我们的专栏吧


·
·
·

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
​即插即用!美团提出整数量化系数方案:大模型细粒度量化的免费午餐社交互动和言辞尊重帝国理工刘教授1v1科研-基于数据驱动的电商定价模型研究|收获一作论文与导师推荐信!名师观点丨陈劲:以新技术、新产业驱动新质生产力CVPR 2024 | 通过细粒度人类反馈对齐数据,提高多模态大模型可信度某基金的瓜!在公司厕所对齐颗粒度?Circulation研究提出新概念,动脉粥样硬化是一种平滑肌细胞驱动的肿瘤样疾病【直播预告】蛋白降解双平台(GlueTacs®)驱动的肿瘤及免疫药物研发2024,哪个包会是LV的断货王?大乌龙!给50万顾客发中奖邮件又反悔!Tim Hortons​遭集体诉讼十三姐夫 | 结婚18年,我终于对齐了颗粒度又幸福了!麦当劳和肯德基新品上市!低至$6.95!属于澳洲6月的快乐!有不烦车子的自动停启功能的吗?2024 BMW X5再见!波士顿动力人形机器人Atlas​环球时尚焦点:中国富豪海外狂买奢侈品 ​Superdry破产倒计时百年前的90后、00后有多强?一文捋清五四运动的细节ECCV 2024 | 数字人也懂惯性定律!上海AI Lab团队提出3D人体姿态序列建模激素治疗无效?TH17内源性IL-1β–STAT5轴驱动的激素抵抗,可能是核心原因!​AAAI 2024 | 杭电等提出MINDS,基于序列超图和对抗学习增强多尺度扩散预测Gantt chart project management tool/Office 365 SharePoint解析:保单贴现二级市场交易活动的驱动力Science|揭示哮喘新病因!支气管收缩通过过度的细胞挤压损害气道上皮Best CD Rates Of April 2024: Up To 5.42%让玩家全程掌控游戏:自然语言指令驱动的游戏引擎到来了2024美国建筑师协会年会:融合共创,驱动未来设计|AIA'24SIGIR 2024 | 共现关系还是细粒度偏好?ID和模态信息解耦的会话推荐总是莫名不开心,你不是情绪化,只是「情绪颗粒度」太低20万人高分推荐!Top1咨询公司发布最强估值建模手册政府部门和一线医生之间,该如何对齐颗粒度?说说参加国家医保局座谈会的一些感受。极长序列、极快速度:面向新一代高效大语言模型的LASP序列并行春季观鹤:2024 科州中篇小说:连长(10)从Q1财报,看AI对百度的驱动力智利海景,冰川覆盖LeCun新作:分层世界模型,数据驱动的人型机器人控制今日arXiv最热NLP大模型论文:天津大学发布大模型数学能力细粒度评价基准FineMath“海上”光影新纪元丨于冬与王长田的“数字资产”辩论引爆上影节,全网寻找下一个AI驱动的奥斯卡赢家这世界终于等到你AI Talk | 耶鲁博士马征:从交换信息到交换认知,从效率驱动到创新驱动愚人节(4/1/2024)
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。