Npj Comput. Mater.: 金属体系微观结构—建模与仿真综述
材料及其行为的多样性和复杂性源于其微观结构特征(如空隙、裂纹、相、晶粒、位错和局部化学成分)之间的关联及其与外界环境之间复杂的非线性相互作用。一直以来,许多工程材料的化学、微观结构和行为之间的复杂相互作用主要通过实验方法进行研究。然而,由于相互作用本身的复杂性以及巨大的材料搜索空间,再加上实验条件的限制,仅基于实验的材料设计和研究是极其困难和耗时的。这也是计算模拟成为材料科学和工程领域的重要工具的原因之一。许多原理上或技术上难以通过实验进行测量的物理量,都可以通过计算模拟进行跟踪和研究。在计算能力提高的同时,计算建模的进步也达到了能够与实验相媲美的水平。
The complex interplay between chemistry, microstructure, and behavior of many engineering materials has been investigated predominantly by experimental methods. Parallel to the increase in computer power, advances in computational modeling methods have resulted in a level of sophistication which is comparable to that of experiments. At the continuum level, one class of such models is based on continuum thermodynamics, phase-field methods, and crystal plasticity, facilitating the account of multiple physical mechanisms (multi-physics) and their interaction during microstructure evolution. This paper reviews the status of simulation approaches and software packages in this field and gives an outlook towards promising research directions.
扩展阅读
微信扫码关注该文公众号作者