Redian新闻
>
AI理解不了“他她它”咋办?动词成为新突破口,机器人听到抹黄油就知道拿刀叉 | 清华AIR&北大&英特尔

AI理解不了“他她它”咋办?动词成为新突破口,机器人听到抹黄油就知道拿刀叉 | 清华AIR&北大&英特尔

公众号新闻
萧箫 发自 凹非寺
量子位 | 公众号 QbitAI

给AI下指令时,总觉得和人沟通不太一样?

没错,AI虽然能听懂一些具体的人类指令,例如:

帮忙从餐厅搬个椅子过来。

但要是换成只有代词(他/她/它/这/那/东西…)和动词的模糊指令,AI就一头雾水了:

帮忙找个能垫脚的东西

现在,终于有研究人员想出了一种新的应对方法:让AI学会理解动词不就行了?

动词本身就和一些特定的名词绑定,例如“抹黄油”这个动作肯定离不开“刀”、“叉”这样的名词。

只需要将它们进行匹配,不需要“刀叉”这类名词指令,AI也能准确找出目标物体:

目前,这篇论文正式被NeurIPS 2022收录,相关模型也已经开源:

所以它究竟是如何训练AI理解动词的?

遮住名词让AI“看图找物”

论文提出了一种名叫TOIST的框架。

TOIST即“任务导向的实例分割Transformer”(Task Oriented Instance Segmentation Transformer),是一种基于Transformer的实例分割新方案。

实例分割与语义分割的“全图切割”不同,它还具备目标检测的特点,例如下图凭借名词“掀背车”(hatchback car),直接找出对应物体:

此前,实例分割模型通常分为“两步走”,第一步检测可能的目标,第二步对可能的目标进行排序,预测出最有可能的结果。

但与这种方式不同,TOIST框架直接采用一整个Transformer架构,其中解码器中的自注意力机制可以建立候选目标之间的偏好关系。

TOIST框架整体分为三个部分。

其中,多模态编码器(棕色部分)负责提取特征标记,Transformer编码器(绿色部分)负责将两种模态的特征聚合起来,并基于Transformer解码器(蓝色部分)中的注意力机制来预测最合适的目标。

随后,论文提出了一种新的名词-代词蒸馏方法 (noun-pronoun distillation)来训练模型。

具体来说,即基于知识蒸馏(上图教师-学生模型)框架,以无监督学习的方式,训练AI凭借上下文来“猜测”名词原型。

例如原本的实例分割任务是“用滑板挖洞”,但在训练模型时,会把名词“滑板”(skateboard)用代词“某个东西”(something)替代:

这样AI在不知道名词的时候,也能凭空猜测出正确的名词,并在图中分割出正确的目标:

这样的分割效果,在实际案例中表现如何?

目标检测提升10.9%精度

论文在大规模任务数据集COCO-Tasks上对TOIST进行了测试。

评估方法采用的是目标检测等视觉任务中常见的mAP(mean Average Precision)

简单来说,TOIST比此前的实例分割和目标检测模型SOTA模型表现更好,而有了名词-代词蒸馏方法加成的“强化版”TOIST,表现又比TOIST更上一层楼。

其中在目标检测任务上,相比当前最好的Yolo+GGNN,“强化版”TOIST的判定框精度mAP提升了10.9%,在实例分割任务上,遮罩精度则比Mask-RCNN+GGNN高6.6%

至于提出的名词-代词蒸馏方法,相比TOIST原版,又在实例分割任务上分别提高了2.8%3.8%的精度。

具体到案例表现上,模型效果也与实际分割真值非常接近。

例如在图(d)中,算法甚至识别出来了能用桌子开啤酒瓶盖,可以说是理解能力满分了:

对于做这项研究的初衷,作者回应称:

我们实验室其实是负责研究机器人的,但在平时的调研中发现,用户有时候会更倾向于给机器人描述“需求”,而不是直接告诉机器人做什么。

换而言之,就是用AI算法让机器人“多想一步”,而非只是一个听从命令的助手。

作者介绍

这篇论文的作者来自清华大学智能产业研究院(AIR)、北京大学和英特尔研究院,AIR院长张亚勤也是作者之一。

论文一作李鹏飞,清华大学智能产业研究院的在读博士生,本科毕业于中国科学院大学,研究方向是自动驾驶、计算机视觉等。

通讯作者赵昊,清华大学智能产业研究院助理教授(incoming Assistant Professor)、英特尔中国研究院研究科学家、北大联合博士后,本博毕业于清华大学电子工程系,研究兴趣是机器人、计算机视觉方向。

对视觉-语言大模型感兴趣的小伙伴们,可以试试这个新思路了~

论文地址:
https://arxiv.org/abs/2210.10775

项目地址:
https://github.com/AIR-DISCOVER/TOIST

MEET 2023 大会定档!

嘉宾全阵容公布

量子位「MEET2023智能未来大会」正式定档12月14日!嘉宾全阵容已于近日正式公布。

20位来自智能科技产业、科研、投资领域具有代表性企业的直接负责人,将在MEET大会上共同交流、思维碰撞。期待与大家共聚MEET2023!


点这里关注我 👇 记得标星噢 ~


一键三连「分享」、「点赞」和「在看」

科技前沿进展日日相见 ~ 

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
“它”被很多人称为“衰老加速器”!你每吃一口食物,都在影响“它”;进化史上一次“伟大的退化”让人类能够开口说话|本周论文推荐爱美丽自行车clinic上交大校友获最佳论文,机器人顶会CoRL 2022奖项公布DHL花1500万买波士顿动力机器人产品,物流企业正布局机器人生态|科技前哨当不了心灵手巧的爸爸,咋办?理解世界、理解投资、理解抄底特斯拉人形机器人拉胯?没关系,以后不靠人形机器人!“它”又双叒叕更新了,只可惜99%的妈妈还不知道2022的九月琐碎:在路上蓝驰创投曹巍:特斯拉人形Optimus并非新概念,机器人赛道延伸性超乎想象人形机器人火了,带动三大核心产业,机器人时代来临【附下载】| 智东西内参娄岩一周诗词四首英特尔和火山引擎携手打造的这套 VR 医疗培训系统,给智慧医疗画好了“一个样板”「高新兴机器人」获5000万A轮融资,专注巡逻机器人|36氪首发怎么正确地看预期寿命杀入扫地机器人红海,这家扫地机器人创企用“黑科技”构筑护城河活着(五)$1.38加币/升!2022年GTA历史最低油价!加油就等这天[语法] 长难句看不懂之:使役动词和指代问题预见金兔|国海证券夏磊:最艰难时刻已经过去,扩大内需将是我国经济发展的重要突破口「蔚小理」2022 年交付量曝光;马斯克,资产缩水 2000 亿美元第一人;英特尔、高通力推主动散热芯片 | 极客早知道北大校友群传出骇人听闻的消息:张益唐证明了朗道-西格尔猜想英语考前必看!名词、冠词、代词、动词的高频考点都在这里了!“他的软肋是儿子”,这是我今年听到最恐怖的话他是溯源的突破口Animoca CEO萧逸谈NFT游戏:有寒气但不是寒冬,亚洲将是突破口专访科沃斯机器人CEO钱程:全场景、多机协同是机器人未来的发展方向我理解不了你,但我支持你英语教师:英语考试常见11类动词词组,阅读完型必备!查出脂肪肝,不吃肉和油就能减掉脂肪?错!工业机器人企业数量全国第一,江苏省工业机器人产业盘点丨智造者iPhone 换 C 口,iPod 之父点赞/波士顿动力承诺不制造战争机器人/国庆总票房 14 亿英特尔VS英伟达,谁将成为芯片赛道的“王者”?双足机器人的最新就业方向:波士顿动力机器人「进厂搬砖」了!父母之间的死结,我和姐姐解不了 | 人间 · Z世代
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。