百亿、千亿级参数的基础模型之后,我们正在步入以数据为中心的时代?
选自hazyresearch
「无用输入,无用输出」,即向模型输入的数据 / 特征信息决定模型成败。 「太多参数会导致过度拟合」,近 20 余年来,通用、稀疏模型的开发大行其道。普遍观念认为稀疏模型参数较少,有助于降低过拟合,因而可以更好地进行泛化。
一旦某项技术稳定下来,其价值指向就会回到数据上。在这种情况下,随着 TensorFlow、PyTorch、MXNet、Theano 等技术的出现,深度学习技术开始商业化,但对特定问题的描述没有给出广泛的数据分布、任务规范等。因此,成功与否取决于如何将相关信息引入模型; 我们可以(也需要)处理噪声。基础的数学和工程原则上有助于噪声处理。用户很难在训练数据中完美地表达他们的知识,不同数据源的质量可能也不尽相同。在研究弱监督的基本理论时,我们发现模型可以从含噪数据中学到很多(并非所有无用数据都不好)。也就是说,要避免输入无用信息 —— 但也不必对数据太过吹毛求疵。
© THE END
转载请联系本公众号获得授权
投稿或寻求报道:[email protected]
微信扫码关注该文公众号作者
戳这里提交新闻线索和高质量文章给我们。
来源: qq
点击查看作者最近其他文章