Redian新闻
>
Npj Comput. Mater.: 极端机械性能—无边界-无目标搜索及其他

Npj Comput. Mater.: 极端机械性能—无边界-无目标搜索及其他

公众号新闻

海归学者发起的公益学术平台

分享信息,整合资源

交流学术,偶尔风月

虽然量子水平的高通量筛选(如第一原理计算)可以进行结构性质预测,并在寻找有前途材料方面具有很高的准确性,但其效率较低。而经典水平(如经典分子动力学)的预测效率高,但其准确率较低。机器学习方法可以很好的弥合第一性原理精度和分子动力学效率之间的差距。它经过训练后具有较高的效率和准确性,在过去的十年里已被广泛应用于材料性质的预测。机器学习算法通过评估给定的数据来学习数据集的规则和关系,并建立模型进行预测,目前已成功地预测了金属合金力学性能、晶体带隙和晶体的形成能等。然而,现有的机器学习算法所预测的材料性质通常不能超出原始训练数据,而大多数非平凡的结构都存在于巨大物质空间的稀疏区域。因此,为了预测稀疏区域内可能超过机器学习训练数据范围的材料的性质,必须开发更先进的机器学习模型。


来自美国南卡来纳大学机械工程系的Joshua Ojih等,提出了一种无限的无目标搜索(BLOX)算法来进行机械性质的搜索,可以预测超出材料原始训练数据的性质,并在具有85707个晶体结构的材料数据库中进行了验证。作者通过使用三对不同的机械性质作为搜索的属性空间,即体积模量与剪切模量、剪切模量与硬度以及普格比与泊松比,设计了无限无目标搜索算法进行极端机械性能搜索。在BLOX算法实施过程中,构建了一个机器学习模型,即随机森林算法,以预测材料的属性。在搜索空间属性时,BLOX算法搜索边界外以捕获位于边界边缘的材料的性质,这主要是通过使用Stein新奇度分数来推荐具有超出边界趋势的潜在材料来实现。该工作提出的BLOX算法,可以用于预测材料超出原始训练数据的性质,从而加速了材料发现的过程,并且可以通过密度泛函理论计算将材料性质推向极限。


该文近期发表于npj Computational Materials 8:143(2022)英文标题与摘要如下,点击左下角“阅读原文”可以自由获取论文PDF。




Efficiently searching extreme mechanical properties via boundless objective-free exploration and minimal first-principles calculations


Joshua Ojih, Mohammed Al-Fahdi, Alejandro David Rodriguez, Kamal Choudhary & Ming Hu


Despite the machine learning (ML) methods have been largely used recently, the predicted materials properties usually cannot exceed the range of original training data. We deployed a boundless objective-free exploration approach to combine traditional ML and density functional theory (DFT) in searching extreme material properties. This combination not only improves the efficiency for screening large-scale materials with minimal DFT inquiry, but also yields properties beyond original training range. We use Stein novelty to recommend outliers and then verify using DFT. Validated data are then added into the training dataset for next round iteration. We test the loop of training-recommendation-validation in mechanical property space. By screening 85,707 crystal structures, we identify 21 ultrahigh hardness structures and 11 negative Poisson’s ratio structures. The algorithm is very promising for future materials discovery that can push materials properties to the limit with minimal DFT calculations on only ~1% of the structures in the screening pool.

扩展阅读

 
Npj Comput. Mater.: 材料预测—精确可传递
Npj Comput. Mater.: 自旋波太短怎么办?电磁波来帮你看!
Npj Comput. Mater.: 欲探新材,先学淘宝
Npj Comput. Mater.: 材料生长缺失数据—贝叶斯优化
本文系网易新闻·网易号“各有态度”特色内容
媒体转载联系授权请看下方

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
Prompt总结 | 从MLM预训任务到Prompt Learning原理解析与Zero-shot分类、NER简单实践Npj Comput. Mater.: 欲探新材,先学淘宝Npj Comput. Mater.: 材料生长缺失数据—贝叶斯优化平实心态看世界Npj Comput. Mater.: 深度学习预测多种电极材料电压为什么说“无边界”是零售的未来?Npj Comput. Mater.: 沸石—大规模精确模拟Npj Comput. Mater.: 自旋波太短怎么办?电磁波来帮你看![录取捷报]墨尔本大学,Computer Science专业录取啦!Npj Comput. Mater.: 结构描述符大佬观点—不是越精确越好FastTrack Universität 2023莱比锡大学公立语言项目招生简章来延安的侨领德国医生日本护士周末愉快 拼多多Npj Comput. Mater.: 高熵合金催化剂—吸附能的线性关系江山无限Npj Comput. Mater.: 玻璃结构预测—懂物理的机器学习Npj Comput. Mater.: 有机-无机钙钛矿材料—降解机制Npj Comput. Mater.: 材料定律—识别与发现的新方法Npj Comput. Mater.: 带电膜的力学和电化学—新理论、新诠释Npj Comput. Mater.: 水粘度模拟—第一性原理-深度神经网络Npj Comput. Mater.: 局部原子邻域描述符—无损压缩[录取捷报]爱丁堡大学,Computer Science专业录取啦![电脑] [第八届机王争霸赛]专业MOD组——X-Computer by JETH-DESIGNNpj Comput. Mater.: 与材料科学的碰撞:深度学习的近况Npj Comput. Mater.: 打开黑盒子—可解释的机器学习UC Santa Cruz VLAA Lab招全奖Computer Vision/Deep Learning博士Npj Comput. Mater.: 低温晶界迁移—经典模型Npj Comput. Mater.: 单原子催化剂—动态电荷转移模型精选SDE岗位 | TripActions、Cambly Inc.、Sigma Computing发布最新岗位!远方Npj Comput. Mater.: 材料预测—精确可传递Npj Comput. Mater.: 2D过渡金属单卤化物—如此超导和拓扑态Npj Comput. Mater.: 纳米晶三维结构重建—知识与经验Npj Comput. Mater.: 多主元素合金硬度—集成神经网络模型博士生申请 | UC Santa Cruz VLAA Lab招全奖Computer Vision/Deep Learning博士
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。