Redian新闻
>
YOLOv8来啦 | 详细解读YOLOv8的改进模块!YOLOv5官方出品YOLOv8,必卷!

YOLOv8来啦 | 详细解读YOLOv8的改进模块!YOLOv5官方出品YOLOv8,必卷!

公众号新闻


MLNLP社区是国内外知名的机器学习与自然语言处理社区,受众覆盖国内外NLP硕博生、高校老师以及企业研究人员。
社区的愿景是促进国内外自然语言处理,机器学习学术界、产业界和广大爱好者之间的交流和进步,特别是初学者同学们的进步。
转载自 | 集智书童

回顾一下YOLOv5,不然没机会了

1

『』

这里粗略回顾一下,这里直接提供YOLOv5的整理的结构图吧:
  1. Backbone:CSPDarkNet结构,主要结构思想的体现在C3模块,这里也是梯度分流的主要思想所在的地方;
  2. PAN-FPN:双流的FPN,必须香,也必须快,但是量化还是有些需要图优化才可以达到最优的性能,比如cat前后的scale优化等等,这里除了上采样、CBS卷积模块,最为主要的还有C3模块(记住这个C3模块哦);
  3. Head:Coupled Head+Anchor-base,毫无疑问,YOLOv3、YOLOv4、YOLOv5、YOLOv7都是Anchor-Base的,后面会变吗?
  4. Loss:分类用BEC Loss,回归用CIoU Loss。

话不多说,直接YOLOv8吧!

2

『』

直接上YOLOv8的结构图吧,小伙伴们可以直接和YOLOv5进行对比,看看能找到或者猜到有什么不同的地方?
下面就直接揭晓答案吧,具体改进如下:
  1. Backbone:使用的依旧是CSP的思想,不过YOLOv5中的C3模块被替换成了C2f模块,实现了进一步的轻量化,同时YOLOv8依旧使用了YOLOv5等架构中使用的SPPF模块;
  2. PAN-FPN:毫无疑问YOLOv8依旧使用了PAN的思想,不过通过对比YOLOv5与YOLOv8的结构图可以看到,YOLOv8将YOLOv5中PAN-FPN上采样阶段中的卷积结构删除了,同时也将C3模块替换为了C2f模块;
  3. Decoupled-Head:是不是嗅到了不一样的味道?是的,YOLOv8走向了Decoupled-Head;
  4. Anchor-Free:YOLOv8抛弃了以往的Anchor-Base,使用了Anchor-Free的思想;
  5. 损失函数:YOLOv8使用VFL Loss作为分类损失,使用DFL Loss+CIOU Loss作为分类损失;
  6. 样本匹配:YOLOv8抛弃了以往的IOU匹配或者单边比例的分配方式,而是使用了Task-Aligned Assigner匹配方式。

1、C2f模块是什么?与C3有什么区别?

我们不着急,先看一下C3模块的结构图,然后再对比与C2f的具体的区别。针对C3模块,其主要是借助CSPNet提取分流的思想,同时结合残差结构的思想,设计了所谓的C3 Block,这里的CSP主分支梯度模块为BottleNeck模块,也就是所谓的残差模块。同时堆叠的个数由参数n来进行控制,也就是说不同规模的模型,n的值是有变化的。
其实这里的梯度流主分支,可以是任何之前你学习过的模块,比如,美团提出的YOLOv6中就是用来重参模块RepVGGBlock来替换BottleNeck Block来作为主要的梯度流分支,而百度提出的PP-YOLOE则是使用了RepResNet-Block来替换BottleNeck Block来作为主要的梯度流分支。而YOLOv7则是使用了ELAN Block来替换BottleNeck Block来作为主要的梯度流分支。
C3模块的Pytorch的实现如下:
class C3(nn.Module):
    # CSP Bottleneck with 3 convolutions
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 11)
        self.cv2 = Conv(c1, c_, 11)
        self.cv3 = Conv(2 * c_, c2, 1)  # optional act=FReLU(c2)
        self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0for _ in range(n)))

    def forward(self, x):
        return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))
下面就简单说一下C2f模块,通过C3模块的代码以及结构图可以看到,C3模块和名字思路一致,在模块中使用了3个卷积模块(Conv+BN+SiLU),以及n个BottleNeck。
通过C3代码可以看出,对于cv1卷积和cv2卷积的通道数是一致的,而cv3的输入通道数是前者的2倍,因为cv3的输入是由主梯度流分支(BottleNeck分支)依旧次梯度流分支(CBS,cv2分支)cat得到的,因此是2倍的通道数,而输出则是一样的。
不妨我们再看一下YOLOv7中的模块:
YOLOv7通过并行更多的梯度流分支,放ELAN模块可以获得更丰富的梯度信息,进而或者更高的精度和更合理的延迟。
C2f模块的结构图如下:
我们可以很容易的看出,C2f模块就是参考了C3模块以及ELAN的思想进行的设计,让YOLOv8可以在保证轻量化的同时获得更加丰富的梯度流信息。
C2f模块对应的Pytorch实现如下:
class C2f(nn.Module):
    # CSP Bottleneck with 2 convolutions
    def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion
        super().__init__()
        self.c = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, 2 * self.c, 11)
        self.cv2 = Conv((2 + n) * self.c, c2, 1)  # optional act=FReLU(c2)
        self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((33), (33)), e=1.0for _ in range(n))

    def forward(self, x):
        y = list(self.cv1(x).split((self.c, self.c), 1))
        y.extend(m(y[-1]) for m in self.m)
        return self.cv2(torch.cat(y, 1))
SPPF改进了什么?
这里讲解的文章就很多了,这里也就不具体描述了,直接给出对比图了
上图中,左边是SPP,右边是SPPF。

PAN-FPN改进了什么?

我们先看一下YOLOv5以及YOLOv6的PAN-FPN部分的结构图:
YOLOv5的Neck部分的结构图如下:
YOLOv6的Neck部分的结构图如下:
我们再看YOLOv8的结构图:
可以看到,相对于YOLOv5或者YOLOv6,YOLOv8将C3模块以及RepBlock替换为了C2f,同时细心可以发现,相对于YOLOv5和YOLOv6,YOLOv8选择将上采样之前的1×1卷积去除了,将Backbone不同阶段输出的特征直接送入了上采样操作。

Head部分都变了什么呢?

先看一下YOLOv5本身的Head(Coupled-Head):
而YOLOv8则是使用了Decoupled-Head,同时由于使用了DFL 的思想,因此回归头的通道数也变成了4*reg_max的形式:

对比一下YOLOv5与YOLOv8的YAML

损失函数

对于YOLOv8,其分类损失为VFL Loss,其回归损失为CIOU Loss+DFL的形式,这里Reg_max默认为16。
VFL主要改进是提出了非对称的加权操作,FL和QFL都是对称的。而非对称加权的思想来源于论文PISA,该论文指出首先正负样本有不平衡问题,即使在正样本中也存在不等权问题,因为mAP的计算是主正样本。
q是label,正样本时候q为bbox和gt的IoU,负样本时候q=0,当为正样本时候其实没有采用FL,而是普通的BCE,只不过多了一个自适应IoU加权,用于突出主样本。而为负样本时候就是标准的FL了。可以明显发现VFL比QFL更加简单,主要特点是正负样本非对称加权、突出正样本为主样本。
针对这里的DFL(Distribution Focal Loss),其主要是将框的位置建模成一个 general distribution,让网络快速的聚焦于和目标位置距离近的位置的分布。
DFL 能够让网络更快地聚焦于目标 y 附近的值,增大它们的概率;
DFL的含义是以交叉熵的形式去优化与标签y最接近的一左一右2个位置的概率,从而让网络更快的聚焦到目标位置的邻近区域的分布;也就是说学出来的分布理论上是在真实浮点坐标的附近,并且以线性插值的模式得到距离左右整数坐标的权重。

样本的匹配

标签分配是目标检测非常重要的一环,在YOLOv5的早期版本中使用了MaxIOU作为标签分配方法。然而,在实践中发现直接使用边长比也可以达到一阿姨你的效果。而YOLOv8则是抛弃了Anchor-Base方法使用Anchor-Free方法,找到了一个替代边长比例的匹配方法,TaskAligned。
为与NMS搭配,训练样例的Anchor分配需要满足以下两个规则:
  1. 正常对齐的Anchor应当可以预测高分类得分,同时具有精确定位;
  2. 不对齐的Anchor应当具有低分类得分,并在NMS阶段被抑制。基于上述两个目标,TaskAligned设计了一个新的Anchor alignment metric 来在Anchor level 衡量Task-Alignment的水平。并且,Alignment metric 被集成在了 sample 分配和 loss function里来动态的优化每个 Anchor 的预测。

Anchor alignment metric:

分类得分和 IoU表示了这两个任务的预测效果,所以,TaskAligned使用分类得分和IoU的高阶组合来衡量Task-Alignment的程度。使用下列的方式来对每个实例计算Anchor-level 的对齐程度:
s 和 u 分别为分类得分和 IoU 值,α 和 β 为权重超参。从上边的公式可以看出来,t 可以同时控制分类得分和IoU 的优化来实现 Task-Alignment,可以引导网络动态的关注于高质量的Anchor。

Training sample Assignment:

为提升两个任务的对齐性,TOOD聚焦于Task-Alignment Anchor,采用一种简单的分配规则选择训练样本:对每个实例,选择m个具有最大t值的Anchor作为正样本,选择其余的Anchor作为负样本。然后,通过损失函数(针对分类与定位的对齐而设计的损失函数)进行训练。

参考

[1].https://github.com/uyolo1314/ultralytics.
[2].https://github.com/meituan/YOLOv6.
[3].https://arxiv.org/abs/2209.02976.
[4].https://github.com/PaddlePaddle/PaddleDetection.
[5].https://github.com/PaddlePaddle/PaddleYOLO.
[6].https://github.com/open-mmlab/mmyolo.

技术交流群邀请函

△长按添加小助手

扫描二维码添加小助手微信

请备注:姓名-学校/公司-研究方向
(如:小张-哈工大-对话系统)
即可申请加入自然语言处理/Pytorch等技术交流群

关于我们

MLNLP 社区是由国内外机器学习与自然语言处理学者联合构建的民间学术社区,目前已经发展为国内外知名的机器学习与自然语言处理社区,旨在促进机器学习,自然语言处理学术界、产业界和广大爱好者之间的进步。
社区可以为相关从业者的深造、就业及研究等方面提供开放交流平台。欢迎大家关注和加入我们。

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
详细解读 | 澳洲留学再增加2年毕业工签!中国留学生485工签最长可工作6年,偏远地区将更久!梦境检查感染了高危HPV52,怎么办呢?纽约州哈里曼州立公园(Harriman State Park),秋的诗意YOLOv8来了!YOLOv5官方出品!大雪封城!加拿大百年一遇大暴雪、整个城市瘫痪!官方出动救援最航运 | 详细解读2030年实现提单100%电子化,你准备好了吗?屡战屡败不可怕,加急也有小诀窍!美国律师为您详细解读申请小技巧!官方出品1:1(12米长)钞券版《千里江山图》,以后可能很难买到了!CVPR 2023 | YOLOv7强势收录!时隔6年,YOLOv系列再登CVPR!斯洛文尼亚布莱德(Bled),金色十月孕期/哺乳期阳了怎么办?会影响宝宝吗?能喂奶吗?吃什么药?(详细解答来了)名声大噪的YOLO迎来YOLOv8,迅速包揽目标检测、实例分割新SOTA专家:新冠肺炎得改名了,改成“新冠病毒传染病”!为什么这么改?详细解释→@哈尔滨人,个人养老金制度启动实施!你能不能参加?如何办理?详细解答↘《山居续忆》:第二十一章:黄陵之游(一)音乐舞蹈史诗《东方红》的文献资料乔伊斯的这句“love loves to love love”,到底啥意思?官方出手!点名曝光价格短期大幅上涨!炒作迹象明显!官方出手了!三年来,长三角一体化示范区建设成果如何?今天的新闻发布会详细解读NeurIPS 2022 | 重振PointNet++雄风!PointNeXt:改进模型训练和缩放策略审视PointNet++YOLOv8已至,精度大涨!教你如何在自定义数据集上训练它超越YOLOv8!YOLOv6 v3.0实时目标检测重磅升级!被马化腾誉为全公司希望的视频号GMV500亿,商业化提速,收商家1%-5%服务费辉瑞高管声称“人为变异新冠病毒”遭曝光,美国官方出来走两步官方出手!530余万个被关闭麻醉学高级卫生专业技术资格考试题型及考点详细解析!画笔画不尽人生,但可以画出杰出人才。EB-1A材料有哪些门道?美国律师详细解读!为爱狂奔1V5之后,他就是新的纯爱战神免费家教!Youtube高质量教育频道盘点:数理化文史+各种考试备考惊呆!Yonge&Hwy7宫殿式豪宅$900万上市!华丽装修曝光!大乌龙!“阿童木靴”火爆全网,价格炒到一万块!号称100%还原动漫,官方“打脸”:设计来源不是阿童木!高通二代骁龙8来了!峰值性能盖过苹果A16,15家预定首发华为缺席刚刚!国内官宣“新十条”,防疫政策再优化!隔离、核酸、健康码均有变,详细解读发布!WHO发布新冠康复指南!
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。