超越YOLOv8!YOLOv6 v3.0实时目标检测重磅升级!
对检测器的Neck部件进行了翻新:引入BiC(Bi-directional Concatenation)提供更精确的定位信息;将SPPF简化为SimCSPSPPF,牺牲较少的速度提升更多的性能。 提出一种AAT(Anchor-aided training)策略,在不影响推理效率的情况下同时受益于Anchor-basedAnchor-free设计理念。 对YOLOv6的Backbone与Neck进行加深,在更高分辨率输入下达成新的SOTA性能。 提出一种新的自蒸馏策略提升YOLOv6小模型的性能,训练阶段采用更大的DFL作为增强版辅助回归分支。
本文方案
Network Design
在网络架构方面,本文主要从Neck与SPP两个维度进行改进:
在Neck方面,本文设计了一种增强的PAN模块,它次用BiC模块对三个近邻层特征进行集成(可参考上图b),额外引入了。这种处理截止可以保留更精确的定位信息,对于小目标定位非常重要。 在SPP方面,本文对YOLOv5 v6.1版本的SPPF进行了简化,得到了所谓的SimCSPSPPF(可参考上图c)。
Anchor-Aided Training
Self-distillation
Experiments
相比YOLOv5-N、YOLOv7-Tiny,YOLOv6-N指标分别提升9.5%、4.2%,同时具有最佳速度。 相比YOLOX-S、PPYOLOE-S、YOLOv6-S指标分别提升3.5%、0.9%且速度更快; YOLOv6-M比YOLOv5-M指标高4.6%、速度相当,比YOLOX-M、PPYOLOE-M指标高3.1%、1.0%且速度更快; 除了比YOLOv5-L更高更快外,YOLOv6-L比YOLOX-L、PPYOLOE-L分别高3.1%、1.4%且速度相当。 相比YOLOv8,YOLOv6在所有尺寸下取得了相当的精度,同时具有更优的吞吐性能。
除了上述常规模型尺寸外,作者还进一步提升了输入分辨率并添加了C6特征,与YOLOv5等方案对比:
相比YOLOv5系列(即YOLOv5-N6/S6/M6/L6/X6),YOLOv6具有更高的AP、相当的速度; 相比YOLOv7-E6E,YOLOv6-L6指标高出0.4%,推理速度快36%。
YOLOv6 v3.0论文和代码下载
后台回复:YOLOv6,即可下载论文和代码
目标检测交流群成立
扫描下方二维码,或者添加微信:CVer222,即可添加CVer小助手微信,便可申请加入CVer-目标检测 微信交流群。另外其他垂直方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch、TensorFlow和Transformer等。
一定要备注:研究方向+地点+学校/公司+昵称(如目标检测+上海+上交+卡卡),根据格式备注,可更快被通过且邀请进群
▲扫码或加微信号: CVer222,进交流群
CVer学术交流群(知识星球)来了!想要了解最新最快最好的CV/DL/ML论文速递、优质开源项目、学习教程和实战训练等资料,欢迎扫描下方二维码,加入CVer学术交流群,已汇集数千人!
▲扫码进群
▲点击上方卡片,关注CVer公众号
整理不易,请点赞和在看
微信扫码关注该文公众号作者
戳这里提交新闻线索和高质量文章给我们。
来源: qq
点击查看作者最近其他文章