2022年最前沿的AI技术进入医学领域,10分SCI的利器你一定要知道!
机器学习就是这样一个发高分利器。仅仅2021年一年,生信+机器学习的套路已经在10+SCI上发了近60篇文章!
所谓机器学习,是指利用算法来检测数据中的模式,而不需要明确的指示。一个学习系统可以利用训练数据集,学会找出输入信息(例如图片)的特征与输出信息(如标签)之间的关联。
机器学习在生信分析中的运用越来越常见,越来越重要。
比如在基因组数据方面,用深度学习检测突变逐渐成为主流方法。
比如群体基因组学领域的PRS,用于基于基因组数据预测生物性状,这就是个典型的机器学习预测问题。
比如非肿瘤研究中,可以用机器学习来评估我们诊断标志物的诊断效力。
临床预测模型、筛基因、二代测序、代谢通路、非编码RNA分析、蛋白质结构功能预测、疾病亚型分型、术后预测……机器学习在这些方面的运用已经越来越多见了。
所以啊,不要再观望了,速度学起来,才能先人一步发高分,而不是做被师弟师妹甩在身后的人(哭了)。
2
PRAT
资源包里有什么秘籍?
扫描下方二维码
无需点赞分享
即可0.99元领取
1
12篇教程文详解如何利用机器学习发高分?
机器学习就是教计算机分析数据,发现其中规律,以便人们进行预测或决定的实践。解螺旋为大家整理12篇教程文,研究透彻之后,各种生信分析难题都不在话下!
我们为大家详细讲解生信可视化,理论和实践兼备,学会了生信小白也能掌握高逼格数据可视化方法!
......
2
超多实用算法一次get
机器学习算法太多了,分类、回归、聚类、推荐、图像识别领域等等,要想找到一个合适算法真的不容易。
解螺旋为大家整理超多实用算法,包括KNN算法、kmeans 算法、决策树算法、贝叶斯公式、线性回归、非线性模型、神经网络、mlr3 包等。
kmeans 算法最初是在 1967 年提出的,当设定 k 个不同的聚类分组后,通过选取 k 个不同的样品作为聚类种子,随后根据其余样本到达这 k 个样品的距离大小,最终将整个样本分成 k 个不同的分组。
决策树(Decision Tree),是一种应用十分广泛的归纳推理算法。通过不断的学习解析表达式的特征,找到针对目标的学习规律。
针对线性回归(简单线性回归)来说,自变量为数值型变量(离散型&连续型),而因变量则是要求为连续型变量且建议正态分布。
当我们做多了线性模型,或者线性模型的结果不好解释,亦或者线性模型的结果不符合我们预期的时候,我们往往会产生一种疑问:数据之间的关系就一定是线性的吗?不一定吧!数据之间的关系应该可以是线性相关,也可以是非线性相关才对。
......
领取方式
扫描下方二维码
无需点赞分享
即可0.99元领取
微信扫码关注该文公众号作者