Redian新闻
>
AAAI 2023 Oral | 图像质量堪忧干扰视觉识别!达摩院提出RTS:鲁棒性特征建模框架

AAAI 2023 Oral | 图像质量堪忧干扰视觉识别!达摩院提出RTS:鲁棒性特征建模框架

公众号新闻

点击下方卡片,关注“CVer”公众号

AI/CV重磅干货,第一时间送达

点击进入—>【计算机视觉】微信技术交流群

来源:机器之心
本文介绍被机器学习顶级国际会议 AAAI 2023 接收的论文 《Improving Training and Inference of Face Recognition Models via Random Temperature Scaling》。论文创新性地从概率视角出发,对分类损失函数中的温度调节参数和分类不确定度的内在关系进行分析,揭示了分类损失函数的温度调节因子是服从 Gumbel 分布的不确定度变量的尺度系数。从而提出一个新的被叫做 RTS 的训练框架对特征抽取的可靠性进行建模。基于 RTS 训练框架来训练更可靠的识别模型,使训练过程更加稳定,并在部署时提供一个对样本不确定度的度量分值,以拒识高不确定的样本,帮助建立更鲁棒的视觉识别系统。大量的实验表明 RTS 可以稳定训练并输出不确定度度量值来建立鲁棒的视觉识别系统。


  • 论文地址:https://arxiv.org/abs/2212.01015
  • 开源模型:https://modelscope.cn/models/damo/cv_ir_face-recognition-ood_rts/summary


背景

不确定性问题:视觉识别系统在真实场景中通常会遇到多种干扰。例如:遮挡(装饰物或者复杂的前景),成像模糊(焦点模糊或者运动模糊),极端光照(过曝或者曝光不足等)。可以把这些干扰都归纳为噪声的影响,此外还有误检图片,通常有猫脸或狗脸等,这些误检测的数据被称作 out-of-distribution(OOD)数据。对于视觉识别来说,上述的噪声和 OOD 数据都构成了不确定性的来源,受到影响的样本会在基于深度模型提取的特征上叠加不确定性,给视觉识别系统带来干扰。例如若底库图被不确定干扰的样本污染,会形成 “特征黑洞”,给视觉识别系统带来隐患。因此需要对表征可靠性进行建模。

表征可靠性建模相关工作

传统多模型解法

传统的在视觉识别链路中对可靠性进行控制的方法是通过一个独立的质量模型完成的。典型的图像质量建模的方式如下:

1、收集标注数据进行具体影响质量因素的标注,比如清晰度如何,有无遮挡以及姿态如何。
2、根据影响因素的标注 label 进行和 1~10 质量分的映射,分数越高对应的质量越好,具体示例可以参考下图左侧示例。
3、由前两步操作得到质量分的标注后进行有序回归训练,从而在部署阶段对质量分进行预测,如下图右侧示例。


独立质量模型的方案在视觉识别的链路中需引入新的模型,且训练依赖标注信息。

DUL

不确定度建模的方法有「Data Uncertainty Learning in Face Recognition」,把特征建模为高斯分布均值和方差的加和,把包含不确定性的特征送入之后的分类器进行训练。从而可以在部署阶段得到和图像质量相关的不确定度的分值。


DUL 用加和的方式描述不确定度,噪声估计值的尺度也和某一类数据的特征分布紧密程度相关。如果数据分布是比较紧密的,那么 DUL 估计出的噪声的尺度也是比较小的。在 OOD 领域的工作指出,数据分布的密度对于 OOD 识别来说不是一个好的度量方式。

GODIN

OOD 领域的工作「Generalized odin: Detecting out-of-distribution image without learning from out-of-distribution data」用联合概率分布的形式处理 OOD 数据,分别用两个独立的分支 h(x) 和 g(x) 估计分类概率值和温度调节值。


由于温度值被建模为概率值,范围被限制在 0-1 之间,对温度没有进行更好的建模。

方法

针对上述问题和相关工作,本文从概率视角出发,对分类损失函数中的温度调节因子和不确定度之间的关联进行分析,提出了 RTS 训练框架。


基于概率视角对温度调节因子进行分析

首先对温度调节因子和不确定度之间的关联进行分析。

设不确定度是符合标准 Gumbel 分布的随机变量,则概率密度函数可以写为,累积分布函数为分类为 k 类的概率值为:


将  带入上式可以得到:


可以看到,分类为 k 类的概率值就是符合 softmax 函数的分值,同时我们可以用一个 t 来调节不确定度的尺度,即,则符合标准 Gumbel 分布:


可以看到,此时分类为 k 类的概率值就是符合带温度调节值为 t 的 softmax 函数的分值。

对温度进行建模

为了减少不确定度估计对分类的影响,温度 t 需要在 1 附近,因此我们把温度 t 建模为
个独立 gamma 分布变量的和:


式中,这样 t 服从,\beta = \frac {\alpha - 1}{v})$ 分布。v 和对分布的影响如下图。


对温度建模的约束在训练中用下述的正则项实现


训练方式

整体的算法整理为:


更多详细的分析和理论证明请参见论文。

结果

在训练阶段,训练数据只包含 face 训练数据的。误检测的猫脸和狗脸的 OOD 数据,用来在测试时验证对 OOD 数据的识别效果和测试说明 OOD 样本不确定度在训练过程中不同阶段的动态过程。

训练阶段

我们画出了 in-distribution 数据(face)和 out-of-distribution 数据(误检测为 face 的猫脸和狗脸)在不同 epoch 数的不确定度分值,从下图可以看到初始阶段所有样本的不确定度分值都分布在较大值的附近,随着训练的进行,OOD 样本的不确定性逐渐升高,face 数据的不确定度逐渐降低,且 face 质量越好,不确定度就越低。通过设置阈值可以区分 ID 数据和 OOD 数据,且通过不确定度的分值反应图像质量。


为了说明在训练阶段对噪声训练数据的鲁棒性。本文对训练集施加不同比例的噪声,基于不同比例噪声训练数据的模型识别效果如下表,可以看到 RTS 对基于噪声数据的训练也能得到较好的识别效果。


部署阶段

下图表明在部署阶段 RTS 框架得到的不确定度分值和 face 质量呈现高相关性


同时在 benchmark 上绘制了去掉低质量样本之后的错误匹配曲线。根据得到的不确定度分值,按照不确定度从高到底的顺序把 benchmark 中不确定度较高的样本去除,然后绘制剩下样本的错误匹配曲线。从下图可以看到,随着过滤的不确定性较高的样本越多,错误匹配是越少的,而去掉相同数量的不确定性样本时,RTS 的错误匹配更少。


为了验证不确定度分值对 OOD 样本的识别效果,在测试时构建 in-distribution 数据集(face)和 out-of-distribution 数据集(误检测为 face 的猫脸和狗脸)。数据样例如下。


我们从两个方面来说明 RTS 的效果。首先绘制不确定度的分布图,从下图可以看到,RTS 方法对 OOD 数据具有较强的区分能力。


同时还绘制了 OOD 测试集上的 ROC 曲线,计算了 ROC 权限的 AUC 值,可以看到 RTS 的不确定度分值对 OOD 数据可以较好的识别。

 


通用识别能力

在 benchmark 上测试通用识别能力,RTS 在不影响 face 识别能力的基础上增加了对 OOD 数据的识别能力。使用 RTS 算法可以在识别和 OOD 数据识别上取得一个均衡的结果。
 




应用

本文模型已在 modelscope 开源。另外给大家介绍下 CV 域上的开源免费模型,欢迎大家体验、下载(大部分手机端即可体验):

1.https://modelscope.cn/models/damo/cv_resnet50_face-detection_retinaface/summary
2.https://modelscope.cn/models/damo/cv_resnet101_face-detection_cvpr22papermogface/summary
3.https://modelscope.cn/models/damo/cv_manual_face-detection_tinymog/summary
4.https://modelscope.cn/models/damo/cv_manual_face-detection_ulfd/summary
5.https://modelscope.cn/models/damo/cv_manual_face-detection_mtcnn/summary
6.https://modelscope.cn/models/damo/cv_resnet_face-recognition_facemask/summary
7.https://modelscope.cn/models/damo/cv_ir50_face-recognition_arcface/summary
8. https://modelscope.cn/models/damo/cv_manual_face-liveness_flir/summary
9.https://modelscope.cn/models/damo/cv_manual_face-liveness_flrgb/summary
10.https://modelscope.cn/models/damo/cv_manual_facial-landmark-confidence_flcm/summary
11.https://modelscope.cn/models/damo/cv_vgg19_facial-expression-recognition_fer/summary
12.https://modelscope.cn/models/damo/cv_resnet34_face-attribute-recognition_fairface/summary

点击进入—>【计算机视觉】微信技术交流群


最新CVPP 2023论文和代码下载


后台回复:CVPR2023,即可下载CVPR 2023论文和代码开源的论文合集

后台回复:Transformer综述,即可下载最新的3篇Transformer综述PDF


多模态和Transformer交流群成立


扫描下方二维码,或者添加微信:CVer333,即可添加CVer小助手微信,便可申请加入CVer-多模态或者Transformer 微信交流群。另外其他垂直方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch、TensorFlow和Transformer等。


一定要备注:研究方向+地点+学校/公司+昵称(如多模态或者Transformer+上海+上交+卡卡),根据格式备注,可更快被通过且邀请进群


▲扫码或加微信号: CVer333,进交流群


CVer学术交流群(知识星球)来了!想要了解最新最快最好的CV/DL/ML论文速递、优质开源项目、学习教程和实战训练等资料,欢迎扫描下方二维码,加入CVer学术交流群,已汇集数千人!


扫码进群

▲点击上方卡片,关注CVer公众号

整理不易,请点赞和在看

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
CVPR'23 最佳论文候选 | 采样提速256倍!蒸馏扩散模型生成图像质量媲美教师模型中国信通院赵小飞:物联网金融发展的阶段性特征思考震惊华人圈! 澳洲新建豪宅凌晨倒塌, 一家三口险些被埋! 建商接连倒闭, 建筑质量堪忧…MLNLP学术Talk第十九期 | 余海洋、黎槟华@阿里达摩院:基于知识的下一代对话:新任务、新数据、新榜单CVPR 2023 | 谷歌、MIT提出统一框架MAGE:表征学习超MAE,无监督图像生成超越 Latent Diffusion达摩院开源半监督学习框架Dash,刷新多项SOTA转:2023 回国探亲(5)PNAS:科学家识别出一种能评估患癌风险的特殊基因特征Transformer升级之路:长度外推性与位置鲁棒性达摩院基础视觉智能团队招聘:2023届校招补录、2024届实习生、研究型实习生国际要闻简报,轻松了解天下事(03ECCV 2022 | SegPGD: 能有效提升语义分割模型鲁棒性的对抗攻击方法超高分论文!视觉新范式!COCs:将图像视为点集达摩院:2023十大科技趋势阿里版ChatGPT已进入测试!中文聊天截图曝光,达摩院出品AAAI2023 | 百度+中科院提出USM:一种信息抽取的大一统方法《山居续忆》:第二十九章:我最早的“日记” —— 有关我出生后头两年的记录 (二)AAAI 2023 | 图像质量堪忧干扰视觉识别,达摩院提出更鲁棒框架这次藏都懒得藏!Woolworths最近肉类品质堪忧?网友diss:又贵又肥!北京/杭州内推 | 阿里达摩院开放视觉智能实验室招聘研究型实习生/23届春招杭州内推 | 阿里达摩院城市大脑实验室招聘三维计算方向研究型实习生Eruope 2023达摩院2023十大科技趋势发布:人类对通用AI的想象从未如此具体习共“拼多多”到美国,网购者要小心了NeurIPS 2022 | 用离散对抗训练提高视觉模型的鲁棒性和泛化能力ICLR 2023 | 阿里达摩院开源人脸检测新框架DamoFD俄想收回辽宁号,醉翁之意不在舰阿里达摩院开源:半监督学习框架Dash,刷新多项SOTA!校招 | 阿里巴巴达摩院-语言智能实验室-应用算法-智能司法组阿里达摩院2023十大科技趋势重磅发布:Chiplet、生成式AI榜上有名2023 春 祝姐妹们周末快乐!《更多的诗歌》:27: 笔挺地站着,踩踏磨坊的转轮AAAI 2023 Oral | 图像质量堪忧干扰视觉识别,达摩院提出更鲁棒框架阿里50亿参数AI画画模型火了!将图像拆分再自由重组,达摩院副院长率队打造2022&2023 Subaru Outback 和 2023 Honda CRV Hybrid二选一达摩院发布2023十大科技趋势!生成式AI将进入爆发期90后女博士,研究105种动物“性行为”预言未来!阿里巴巴达摩院发布2023十大科技趋势ChatGPT鲁棒性分析:对抗鲁棒与分布外泛化视角春招大爆料!面试官礼貌微笑背后的人脉密码与人性特征!| 求职必修课
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。