Redian新闻
>
应力之手欲撩开CDW之面纱 | Ising专栏

应力之手欲撩开CDW之面纱 | Ising专栏

公众号新闻

海归学者发起的公益学术平台

分享信息,整合资源

交流学术,偶尔风月


蝶恋花·蓝色清晨

且叹人间多冗闹
千万繁华,一朵风花皎
初见恍如摇曳俏。传奇不过嫣然笑


自负熙熙追窈窕
枯了重逢,患难凋芳草
思尽残留曾美好。终来竟是无情扰




众所周知,物理是一门特别注重“实证”的学问。因为这一鲜明特征,物理才被赋予崇高地位、可靠性和权威性。由所产生的科学、经济和社会效果看去,说物理学是现代科技的源头学科,大概不会有太多非议。黎民大众对实证的威力,当然也是绝对臣服的。所谓“眼见为实”,便是箴言。既然要实证,就需要去观测。物理本源和探测信号之间的互作用,在经典物理学中原本不值一提,但今天已成为一方双刃剑。例如量子力学,揭示其中本源规律的探测进程,对本源自身可能产生影响,也影响对本源的认知,从而给我们心目中至高无上的物理信仰带去一丝负面冲击。当然,这是后话。

之所以出现量子本源与测量相互影响这样的疑问,是因为物理人历经千年,形成了牢固不破的约定:对物理规律的探测,需要有可靠的可观测量 (liang4)。对凝聚态物理,可靠的可观测量,更多是在热力学意义上定义的。我们既约定观测量要包含足够大样本,以尽可能抑制观测进程对本源的影响;也约定可观测量与某一本源之间应尽可能呈现一一对应的因果联系。此时,如果再加上一个好的理论,将观测量与本源 (物态联系起来,好的物理认识就建立了。

在实证这一问题上,物理各分支中凝聚态算得上最接地气,也携带最多直接、功利目的与应用价值。基于朗道对称性及其破缺的范式,也基于热力学,凝聚态物理基本上就做两件事:找到一个热力学可观测量,建立这一观测量与本源之间的联系 (对凝聚态和量子材料,这可能就是所谓的结构 - 性能关系)。例如,材料的低阶相变有比热异常、铁电行为有铁电极化、铁磁行为有磁矩,如此等等。比热、极化和磁矩等物理量,都是可观测量。对可观测量的选择和定义,反映了物理人理解本源的深度,但可靠的可观测量总是我们最关注的物理元素。图 1 所示乃可观测与当下对凝聚态本源之间关系的一些理解:那些漂亮的物理,就如图 1(B) 所示,总归是要好的、清晰可辨的观测窗口,就如图 1(A) 所示。


 1. 凝聚态物理中可观测量的核心地位:“建造”一个好的、可观测的窗口 (A),才能说可能理解到好的、漂亮的物理本源 (B)
(A) https://drexel.edu/coas/academics/departments-centers/physics/(B) https://phy.iiserbpr.ac.in/index.php?category=physics&pid=tcmp

追求这样的可观测量,实际上也展示了凝聚态自身异化的壮阔图景:追逐“可观测”的空间尺度越来越小、时间尺度越来越短、环境条件越来越苛、因果对应越来越弱。演化到一些极端情况,似乎又回到类似量子力学那“纠结难解”的境况:对本源的观测,已严重干扰本源自身的稳定性,因此得到的不完全是初心、而是已出现了畸变的本源。Ising  最熟悉的一个例子,即“铁电性”观测:对铁电性的观测,随着被观测尺度越来越小,“不得不”逐渐从测量铁电极化本身 (样品表面束缚电荷多少),演化到测量“产生铁电极化的离子位移”大小,再到今天的所谓能带空间贝里相位的变化。而产生“铁电极化”的离子位移测量,如果立足于衍射物理的话,就需要注意带电的衍射粒子束会不可避免会地干扰被测目标本身。最终,得到的离子位移,就可能是一个被畸变过的“物理”量。

这类异化的图景,到底是不是可持续的学科之路,Ising 的见识尚不足以在此议论。让人焦虑的,可能是另外一番景象:凝聚态从经典走向量子,从传统材料走向量子材料,实验可观测量的认知也正在面对挑战。举一个最直观的例子,即量子材料研究的前沿问题之一:量子自旋液体 (quantum spin liquid, QSL)。所谓 QSL,是指缺乏实空间有序、但存在波矢空间长程关联的磁性液体,是安德森提出来构建超导态的初始物态,包括“实空间无序、波矢空间关联、自旋单态 (或三重态)”这样的物理约束。这几个名词,马上就定义了实验探测似乎只能用穷举模式:竭尽所能,去一一排除体系中所有可能的自旋有序结构和相变,包括长程的、中程的、短程的。最近一些年,此中物理人经历的那些“费劲”,覆盖了几乎所有热力学与动力学极端测量,就是为了排除“序”的存在。这样的物理,实验上,超越了传统思维,不得不借助一些理论工具来辅证。相信我们都理解如下状况:物理上,穷举是最恐怖的逻辑,会令人惶惶不可终日!

这样的不可终日,在量子材料研究中并非少见,虽然没有 QSL 那么严苛严重。当凝聚态走向量子层面,可测的物理量,正变得越来越稀罕:一是可测量信号变弱,二乃一对一因果关系变弱。特别是后者,如果一个可测量有可能对应若干不同本源,陷入“手足无措”之境就变得难以避免。随意举几个例子,如图 2 所示:


 2. 量子材料结构本源与可测量问题。(A) 物理人构建的图像中,一阶拓扑绝缘体的绝缘体态和金属表面态、高阶拓扑绝缘体的边缘棱金属态和面 / 体绝缘体、零维顶角金属态和棱 /  / 体绝缘态。图中灰色显示绝缘体、金色显示金属态。(B) CMR 锰氧化物的电子相图,其中 PS dynamic 就是指动态电子相分离区域。个中微结构是时空依赖的动态结构,令人手足无措。(C) 高温超导铜氧化物相图的一种,其中各种量子态毗邻混杂在一起,大多数没有唯一的可测量对应。
(A) https://physics.aps.org/articles/v10/132(B) https://www.slideserve.com/tyler-hopkins/dynamic-phase-separation-in-manganites(C) https://cerncourier.com/a/taming-high-temperature-superconductivity/

(1) 拓扑绝缘体。简单而言,拓扑绝缘体就是靠近费米面处能带具有非平庸拓扑性质的体绝缘体。因为拓扑转换的要求,这类体系表面处必定是自旋动量锁定的金属态。理论上,表面态既没有一个确定的表层厚度与之对应,体态也不大可能是大带隙绝缘体。这样的结构,要直接可靠地测量表面金属导电,不是一件容易的事情。能与宏观输运联系起来的可测量,即量子霍尔效应,是一个好的可测量,但从体 - 边对应物理去看,测量到的是一维边缘棱的导电,而不是二维表面 surface 导电。看起来,这似乎是一种单向逻辑,即拓扑绝缘体一定有量子霍尔效应平台,倒过来则未必。既然是未必,对此较真的人们就可“喋喋不休”。

(2) 电子相分离。这是展示“手足无措”问题的典型,在关联过渡金属化合物中普遍存在。例如,CMR 锰氧化物从最开始的 MIT,到 Jahn – Teller 效应、极化子输运,到后来的电荷有序 (charge - ordering),再到电子相分离 (electronic phase separation),无一不是这种“手足无措”的体现 (读者也可以认为是科学研究的必然):再精致的输运测量,似乎也难以清晰呈现量子相本源的面目。特别是,现在更多人认为这些电子相分离的结构是时空 dynamic  ( 2(B) 中的 dynamic phase separation, PS 区域):即便是很弱的光电磁信号干扰,都可以改变电子相分离结构本身。

(3) 高温超导相图。以温度 - 载流子浓度构成的相图为例,铜基高温超导氧化物在其中展示了诸多量子相。对每一相的认识,都多少能看到锰氧化物电子相分离问题的影子。其中关于赝能隙相 (pseudogap) 可以多写几句。高温超导,存在电子配对及库珀对相干两个物理过程。在欠掺杂区,前者和后者对应的形成温度不同,导致两者之间出现一个温度区域:存在电子库珀对,但库珀对密度不足以导致凝聚而实现超导电性。对应这种赝能隙的可测量,似乎一开始就不是很确定,因此早期的赝能隙区很大一部分被认定是奇异金属区。后来,赝能隙区内又出现了电荷密度波 (charge density wave, CDW)、自旋密度波 (spin density waveSDW)、电子向列相 (electron nematic phase) 等更复杂的量子态。如此等等,量子材料人也不得不与宏观量子物理的“不确定”打交道,如图 2 所示,虽然微观量子过程的“不确定”众所周知、却无可奈何。郁闷吧?!

这几个例子,挂一漏万,很好地呈现出量子材料在探测表征上面临的挑战。实验上,基于热力学的物态测量都不再那么一一对应,还需要理论和诸如 ARPES / STM 等高端实验手段介入,方能揣测其中之一二,声称其中之三四,从而推演其量子物态。到目前为止,大概也只能对这些量子相说出个五六,距离理解七八还有距离。也因此,量子材料人总是不放弃、不抛弃,总在想办法找到一些独到的探测技术,去揭示诸多量子物态的本源面目。的确,量子材料的可测量问题是大问题,但这里的“大”主要只针对“唯一性”。反过来,这种唯一性问题,也给确定本源以额外机会:既然宏观测量与本源之间缺乏一一对应的因果,即一个原因可能对应若干个探测结果,或者一个探测结果可以解释为来自几个不同原因,那不妨就进行多种不同类别的探测。交叉排除融合,总归能更明确地确定背后的本源。这大概是量子材料人坚持不懈、继续发力去发展各种 (宏观、热力学意义上的探测技术的驱动力之一。

这里,姑且展示一个有关高温超导中电荷密度波 CDW 的故事,来呈现这种精神。

所谓 CDW,粗略地理解,就是量子材料中电荷密度呈现空间周期调制结构。CDW 的形成过程可归属二级相变,是关联电子体系经常出现的一类量子相。早期对其认知,与晶格畸变的派尔斯相变密切相干,因此 CDW 很容易被归结为电荷与晶格声子相互作用的产物。正因为如此,超导物理人一直认为 CDW 是与超导直接竞争的量子相,被给予足够重视和曝光度。2021 年,npj QM曾刊发过一篇铜基超导中 CDW 的论文 (H. Miao et al, npj QM 6, 31 (2021), https://www.nature.com/articles/s41535-021-00327-4)Ising 也写过相关科普文章外行学习笔记:CDW 与超导(点击即可阅读)。感兴趣的读者可前往御览一二,这里就不再啰嗦太多 CDW 本身的知识。

事实上,这么多年来,CDW 总是作为常规和非常规超导这些主角的反面配角而存在,自身并未展示多少傲人的可用功能。直到最近,CDW 在多种二维材料及 kagome 结构化合物中多有露面,并展示独特的手性结构特征。CDW 的反面配角模式终于得以拓展,已经能与铁电、量子磁性和拓扑量子态等众多角色一道,演出精彩的对手戏,并成为全能角色、倍受关注。如图 3 所示即为铜基超导中 CDW 的面貌之一角。可以看到,也许就是因为 CDW 可测量不多,量子材料人对其认识不得不逐渐深化、或者说要不断修正:撩开其面纱之努力,这么多年来,依然受到肯定和宣扬。


 3. 对铜基高温超导中 CDW 的认识不断被更新。与对 CDW 经典图像认知不同,我们从图 (A) 和图 (B) 一眼就可以洞察出 CDW 丰富的变化。
(A) D. H. Torchinsky et al, Fluctuating charge-density waves in a cuprate superconductor, NM 12, 387 (2013), https://www.nature.com/articles/nmat3571(B) H. Miao et al, Charge density waves in cuprate superconductors beyond the critical doping, npj QM 6, 31 (2021), https://www.nature.com/articles/s41535-021-00327-4

通常意义上的 CDW 相变,常用核磁共振谱 (nuclear magnetic resonanceNMR) 和共振 X 射线散射谱 (resonant X-ray scatteringRXS) 等技术来结构表征,在此不再赘述。从 CDW 结构即可明白,与 CDW 对应的 NMR  RXS 谱学特征明显 (J. Luo et al, npj QM 7, 30 (2022), https://www.nature.com/articles/s41535-022-00437-7L. Yue et al, NC 11, 98 (2020), https://www.nature.com/articles/s41467-019-13813-y),但未必是一一对应的,也不大可能作为鉴定手段付诸广泛应用。另一方面,CDW 相并无特定的热力学可测量与之对应,或者说难以定义一个清晰的热力学可测序参量去表征其结构特征。如此,在比热、磁化率和电输运等测量中,与 CDW 对应的特征信号就较微弱。而且,这样的信号即便有,也并不唯一对应于 CDW

正因为如此,构建与CDW 密切联系的宏观探测技术,无论如何都是量子材料的创新性工作,更不要说能解构 CDW 空间细节的探测技术了。既然电声子耦合是超导和 CDW 等量子态的本源机制,不难联想到晶格应变对这些量子态会有重要影响。基于此,量子材料人最近一些年发展了一类特定的宏观探测技术,即所谓单轴应力探测技术。其基本出发点是对宏观样品施加可控的单轴应力 / 应变,从而改变体系声子结构和电子结构,实现对电声子耦合及其相联系的量子态的调控。图 4(A) 所示,即为这样一类技术的大概示意图和实物示例。

这一技术手段,与某些前人关注过的结构探测结合起来 (例如和 RXS 组合),将能对 CDW 物理进行实验测量和定向操控,成为最近几年备受关注的一类探测维度。这一模式,也能与热力学及输运 (纵向和霍尔电导手段结合起来,付诸多种量子材料研究。此类测量,似乎还有个特定的名称“弹阻测量 elastoresistance measurement”。在研究关联体系中各种量子相的共存与竞争物理时,弹阻方法有独到的效果,特别是在表征与电声子耦合相关的量子相,如超导相、CDW、电子向列相等量子物态上,指针明显。Ising  曾经写过小文大隐于野:超导向列序涨落的扩张(点击即可阅读),提及这种探测技术,感兴趣读者可前往御览一二。

来自德国斯图加特马普固体研究所 (Max Planck Institute for Solid State Research)  Bernhard Keimer 教授,与 A. P. Mackenzie 教授领导的德累斯顿马普化学物理研究所团队合作,呈现了一个很好的实例。Keimer  Mackenzie 都是知名的量子凝聚态学者,特别以铜氧化物和钌氧化物等经典体系中关联物理研究而闻名。他们最近针对欠掺杂铜氧化物 YBa2Cu3O6.67 (YBCO667) 中 CDW 相的认识,提出新的疑问,并基于单轴应力下的 elastoresistance 表征技术,开展系统性实验测量。他们结合早先的 NMR  RXS 结果,揭示出 YBCO667  CDW 相具有与传统认知很不一样的时空结构特征,结果发表在近期的npj QM上,令人印象深刻。需要特别指出,这里的研究对象是铜氧化物这类过渡金属氧化物,其共价键很强,几乎没有弹性,在应力作用下很容易产生微裂纹甚至断裂。对其施加单轴应力、测量输运性质时,如何获得可靠的实验数据,避免微小裂纹和诸如位错等缺陷介入,在技术上有一些难度。


 4. Keimer  Mackenzie 教授他们的部分结果:(A) 发展的单轴应力测量样品台,细节展示得很清楚。(B) YBCO667 的晶体结构示意图。(C) 单轴应力实验测量得到的弹阻系数 (电阻相对变化与应力的比值) - 温度关系 (a) 和来自文献的 RXS 强度 - 温度关系 (b)。可以看到,在 CDW  RXS 信号最强处 (~ 70 K),弹阻系数出现巨大负值变化。在 RXS 信号开始出现温度处 (~ 160 K),弹阻系数出现峰值,说明 CDW  ~ 160 K 之上很高温区就已经出现。(D) 单轴应力下霍尔效应的变化。霍尔电阻在 CDW 区间内呈现巨大变化特征。细节请参阅原文。

拜读完他们发表的大作,Ising 作为门外汉,稍微了解到其中一二。姑且罗列如图4所示,且条陈如下:

(1) 技术上,对单轴应力产生和测量平台进行了改进,在操控条件和测量水平上取得了长足进步,尽可能避免应力作用下经常出现的微裂纹问题。

(2) 展现的纵向电阻及其温谱特征,与早前的 NMR  RXS 揭示的 CDW 特征大致吻合,定性显示处单轴应力下的输运行为对 CDW 相变敏感。

(3) 两个结论之一:伴随 CDW 而出现的电阻下降,是重要的指针,显示这一三维体系可归类于准二维电子系统的 CDW 转变,令人有些意外而意料之中。

(4) 两个结论之二:对 YBCO667 中的霍尔测量数据,用常规的 CDW 相变,尚不足以解释电输运结果。例如,不能解释伴随温度变化而出现的霍尔效应符号变号现象。CDW ,似乎更可能是一种类液态的电荷密度空间调制涨落,而不是准静态下的 CDW 相。这一条,看起来是重要的结论,在很多超导体系中都有所展现。

Keimer 教授他们证实,包括纵向和霍尔电阻的测量结果,对单轴应力的依赖很显著,且与 NMR  RXS 的结果有不一致之处。这里的实验,对揭开铜基超导中 CDW 本源面纱不无作用。不过,Ising 拜读这一成果后,并未对如下结论充满信心:单轴应力下测量到的输运演化特征,可以作为 CDW 的良好测量指针。目前看来,单轴应变下的电阻测量,特别是应变较大时,也会对 CDW 的本源带来畸变效应,不能算是一个最理想的探测方案。这一工作,算是揭示 CDW 这类缺乏显性序参量之量子态的诸多努力之一。诚然,通过单轴弹阻,展示 CDW 的各向异性和类液态涨落特征,是这一工作的亮点。而发展能鉴别 CDW 手性特征的探测方法,应是更令人期待的下一步。

雷打不动的结尾:Ising 乃属外行,描述不到之处,敬请谅解。各位有兴趣,还是请前往御览原文。原文链接信息如下:
论文信息:
Normal-state charge transport in YBa2Cu3O6.67 under uniaxial stress

S. Nakata, P. Yang, M. E. Barber, K. Ishida, H.-H. Kim, T. Loew, M. Le Tacon, A. P. Mackenzie, M. Minola, C. W. Hicks & B. Keimer

npj Quantum Materials 7, Article number: 118 (2022)
https://www.nature.com/articles/s41535-022-00532-9

备注:
(1) 编者 Ising,任职南京大学物理学院,兼职《npj Quantum Materials》编辑。
(2) 小文标题“应力之手欲撩开CDW 之面纱”乃感性言辞,不是物理上严谨的说法。这里表示单轴应力比较等静压而言,更适合于用来研究 CDW 这类电声子参与的量子态物理,虽然技术上存在巨大挑战。的确,这样的宏观测量,给出了铜基超导氧化物中 CDW 的时空特征:准二维、类液态电荷密度涨落!
(3) 文底图片拍摄于东莞松山湖,正是蓝色清晨时刻 (20220822)。小词 (20220829) 原本是聆听歌曲《这世界那么多人》的感怀,“蓝色清晨”取自歌词。此处调寄量子材料人追逐物理本源的进程中看到的风花雪月^_^。
(4) 封面图片展示了高温超导体中 CDW 的冰山一角,而更多的特征依然等待量子材料人去探索。图片取自  https://sciencecodex.com/uncovering-new-aspect-charge-density-modulations-high-temperature-superconductors-633411

扩展阅读

 

超导之外亦超好 | Ising专栏

复盘 Sr2RuO4 超导物理之像 | Ising专栏

反常霍尔招摇处,半源外尔半源磁 | Ising专栏

铁电相亦有利于超导的,好吧 | Ising专栏

本文系网易新闻·网易号“各有态度”特色内容

媒体转载联系授权请看下方

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
Agustín Hernández:中美洲建筑背景下的未来主义巨构Chegg专辑 | 海量岗位来袭!128元4瓶!风靡法国的"天使之手"桃红葡萄酒!沁人果香,一饮钟情拨开ChatGPT爆火迷雾!AIGC开年盛会定档3月24日,首批重磅嘉宾公布复盘 Sr2RuO4 超导物理之像 | Ising专栏超导之外亦超好 | Ising专栏诡异! 互不相识的4位年轻人相约自杀! 是巧合还是有神秘之手?反常霍尔招摇处,半源外尔半源磁 | Ising专栏向“专精特新”活力之城进发,无锡举办Banglink「智能制造&物联网」路演活动 | 园区动态精选SDE岗位 | Okta、Wing、Bandwidth发布新岗位!基辅, 我的心心念念1.5h,为你揭开CFA神秘面纱!就在今晚!强攻磁性原子链的马约拉纳 | Ising专栏何如诊断量子材料 | Ising专栏原创丨大战在即,拜登突访乌克兰释放4个重磅信号!日本纳投名状,中俄之手紧紧握在了一起!体系+工具 国寿投资迈出ESG专业步伐ESG专业服务,一片风险催生的商业机会好是 Kagome、糟也是 Kagome? | Ising专栏执子之手 共赴山河 | “首届商学院越野嘉年华”重磅开启奈及利亚血案 27名奈及利亚信徒死于极端份子之手刘宇专栏:新法EB-5下的公告与实质排期、双递交、快速绿卡|公司专栏获奖案例--让国会议员赞叹不已的信就出自这位马州高中生之手晶体位错亦可量子纠缠? | Ising专栏自旋涨落超导库珀对的万水千山 | Ising专栏迷外驯化深入骨髓的成功典型联合国权威报告:每3名被谋杀的女性中,就有1名死于配偶之手?沙哈拉沙漠以前是绿洲吗,两河文明和埃及文明,犹太人,,由一张90年前的家照想起从未见过的绝美长城,出自90后摄影师之手揭开CXL内存的神秘面纱二维电子气之千面 KTaO3 | Ising专栏“执子之手 共赴山河” ——“首届中国商学院越野嘉年华”活动重磅来袭!亚洲女孩来墨尔本读书,打好几份工养全家人,患癌切除7公斤肿瘤,同胞们伸出援助之手美丽的邂逅,上天最好的馈赠 (上)孩子如何应对未来的复杂性?培养韧性与适应力的教育已成当务之急
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。