Redian新闻
>
被誉为“下一个马斯克”!19岁MIT辍学创业,5年成就73亿美元独角兽,这位华裔男孩成为全球最年轻的亿万富翁!(附视频&演讲稿)

被誉为“下一个马斯克”!19岁MIT辍学创业,5年成就73亿美元独角兽,这位华裔男孩成为全球最年轻的亿万富翁!(附视频&演讲稿)

公众号新闻
高质量英语演讲&专访视频哪里看?
请您点击上方“精彩英语演讲”,并“设为星标
全网最新的英语演讲&专访第一时间为您奉上


近日,福布斯杂志评选出世界最年轻的白手起家的10亿美元级别的富翁,他是美国华裔Alexandr Wang。

17岁,成为美国知名问答网站Quora全职码农;18岁,考入麻省理工学院(MIT)攻读机器学习;19岁(大一),辍学创办了Scale AI并担任CEO…有媒体惊呼,下一个马斯克就要诞生了。


据悉,年仅26岁的Alexandr Wang(亚历山大.王)是麻省理工学院的辍学生,他创办了美国人工智能独角兽企业Scale AI,利用机器学习技术帮助企业解决各式问题,该公司目前市值估达73亿美元。他也因此成了全球最年轻白手起家的亿万富翁。

Alexandr Wang,出生于美国新墨西哥州,父亲是一位武器物理学家。Alexandr从小就表现出在数学和物理方面的天赋,多次入选美国奥数,以及物理竞赛国家队。

他后来就读于麻省理工,本科是双学位:计算机和数学专业。不过后来他果断退学创业。目前Scale AI市值73亿美元,他占15%的股份。这个华裔少年是不是真的能成为下一个马斯克?我们先从他的两个演讲中一探究竟。





Scale AI华裔创始人TED演讲
为什么人工智能永远不会取代人类?

↓↓↓ 上下滑动,查看演讲稿 ↓↓↓


When most people think about AI,  they picture a sci-fi dystopian future, with man versus machine. 

Terminator,  Skynet, Black Mirror, Blade Runner, Westworld. 

But as someone who is working  on the most ambitious AI projects in the world,  every day, I can tell you that is far from reality. 

To me, it’s the contrary of that. 

AI enhances and even supercharges humanity. 

Let me explain why. 

There are many reasons why AI will never replace humans. 

AI always has, and always will, rely on humans. 

That’s one of the reasons  that I was actually inspired to start an AI company. 

That and my background have had a huge impact on me  and why I started Scale. 

My parents were brilliant scientists of Los Alamos,  who accomplished a lot in advancing their field. 

That inspired me to use science and technology  to have a real impact on the world. 

My dad was a physicist, and my mom was an astrophysicist,  both at the top of their field,  who made meaningful contributions to plasma fluid dynamics  and the beginnings of the universe. 

Their scientific work will have meaningful impact  on how we understand and perceive our world. 

And I wanted to work on something as impactful  or even more impactful than that. 

That’s why I decide to become a programmer,  so I can make a difference in the world. 

Growing up as a programmer,  despite how powerful computers are,  you quickly realize how limited they are. 

In particular, they lack judgment and intelligence. 

Programming is the art of giving clear robotic instructions  to computers to accomplish simple objectives. 

It’s all black and white, and there’s no gray area. 

As I learned about AI, it was clearly transformational. 

It changed the game. 

It equipped computers with intelligence, and I knew I wanted to be deeply involved. 

I was studying AI at MIT and slowly became more and more excited  about all the potential applications of AI for solving more nuanced problems. 

For example, there was one class project  where I worked on applying AI to human emotions. 

The goal was to take picture of human expressions  and ultimately identify and understand the emotion through very subtle signals  in facial expressions. 

Using AI, we built an algorithm  that was able to detect intent with 80% accuracy and efficacy. 

We were extremely proud of that. 

It was the start of using AI to do entirely new things using computers. 

That’s when I realize the implications of AI  and how it could tackle the gray areas that involve judgment or intelligence. 

You see, AI needs humans to teach it individual values,  nudge it to find thoughtful outcomes,  and ensure that human intentions and values are aligned with the AI. 

It was a revelation. 

Before, coding was like a black-and-white film  versus watching in technicolor. 

What’s more, AI has the potential to take away the repetition in our lives,  meaning that new and fresh ideas will matter more  and ultimately enable us to be more human. 

But, to power AI, you need powerful data,  which was especially hard to come by at that time, in 2016, while I was at MIT. 

I realized that nobody was building anything with AI outside of school. 

It’s unusual for MIT students to not be building something. 

Mechanical engineering majors are building catapults in the lawn,  electrical engineering majors are building robots,  and computer science majors are building apps for their friends to use. 

But nobody was building anything using AI. 

That’s when I discovered what a bottleneck data can be  to building meaningful and powerful AI systems. 

You can't treat data as an afterthought. 

Bad data or lack of data results in bad AI. 

I even realize this in my personal life. 

I put a camera inside my fridge to gather data,  to tell me when to refill my groceries and what I needed to buy. 

That’s when I realized just how much data I needed  to actually be able to successfully predict what to purchase. 

There’s no way I could create enough data  to be successful with the algorithms on my own. 

But it did help me discover that my roommate was stealing my food. 

  At that point, I realized  that this was going to be a pivotal problem for AI. 

Building large-scale, high-quality datasets  to power every single application. 

This was the impetus behind starting Scale:  quality data, to create reliable AI outcomes,  requires human insight and guidance. 

If you think about the core setup of AI, the algorithms need data,  and data needs humans. 

To ensure data is accurate,  an expert human is often required. 

Only humans can understand the context and nuance  to properly annotate the data to be fed to algorithms. 

Humans are the one who teach the algorithms what to do. 

They’re the ones making the decisions, they guide them. 

If something happens, here’s what you should do. 

And AI learns from that and replicates it. 

We are teaching the AI our individual values  and nudging the AI to find thoughtful outcomes. 

Machines make mistakes. 

We have to teach them and incentivize them to tell the truth. 

This is why teaching the AI human intentions and values is so important. 

It’s through this process that we will ensure  that AI will have fair, ethical outcomes in line with human values. 

It’s this alignment that we must solve for. 

The constant alignment of AI to human intentions will always require humans. 

and human ideas and creativity can actually matter much more,  with the power of AI behind them. 

The long tale of real-world problems,  and the fact that there’s always unknown unknowns  means that humans will never be fully removed  from the AI development lifecycle. 

For example, I remember back in 2016  when chatbots were first starting to become a big thing. 

It was right when we were starting Scale. 

We were all thinking there's no way to build a fully automated system. 

There’re so many different conversations that can have so many different pathways. 

It’s hard to build AI systems that can properly handle all these possibilities. 

For chatbots to work, there’re humans behind it who make the decisions once,  and from there, the chatbots can replicate that over and over again. 

That’s again why it’s impossible for AI to improve  or change without human input. 

Let’s take you to the front lines of AI. 

The things that AI automates first are not what you might expect. 

An unintuitive example is the weather. 

Humans have tried for many millennia  to crack the code of how to predict the weather. 

It’s especially hard for meteorologists  because there are so many different small things  that can cause massive impacts on the weather. 

It's the butterfly effect. 

Different elements react to one another in unexpected ways. 

There’re so many inputs that affect the weather,  way more data than any person would be able to comprehend on their own. 

That’s why we need AI to analyze the vast oceans of data  and provide more accurate, nuanced, and comprehensive analysis. 

At the moment,  AI can already provide extremely accurate short-term predictions,  including for critical storms and floods. 

So, it’s not what humans perceive to be the simplest task  that AI will automate first, but rather where we have the most data. 

The use cases the brightest minds are focusing on  are much more positive than what you might think. 

Much more so than Terminator or Westworld. 

That’s again why I think AI will be a supercharger for humanity. 

Unlike the movies, AI developers aren’t focusing their attention  on building replacements for humans. 

They’re building tools to help free up our time and energy  to focus on what human can uniquely solve. 

A good example about how AI can be used in practice is health care. 

According to the Association of American Medical Colleges,  the United States could see an estimated shortage  of between 38,000 and 124,000 physicians by 2034. 

AI could save doctors’ time with rogue tasks  and ultimately enable them to serve more patients and help more people. 

Health care is full of repetitive tasks which are right for AI. 

When a patient is sick, they go through all kinds of tests  which produce all sorts of data: blood tests, imagery,  lab results, X-rays, etc. 

Doctors then analyze all this data to make decisions about a case. 

AI can analyze all this data proactively  and go through a list of possibilities  by cross-referencing against all prior data in cases. 

It can identify when something isn’t right long before a physician can  and flag it to a physician, if it requires more attention. 

With AI, doctors are still integral to the process,  but it takes less time to get a diagnosis. 

You have to wait several weeks  for your case to go from one doctor to another. 

The AI will supercharge, finding a diagnosis faster. 

Similarly, in the field of drug discovery, it’s all about using complex data:  experiment data, patient data,  protein simulations and far more  to guide a more efficient process  of solving diseas through new drugs and compounds. 

Recent advancements in AI  have dramatically sped up the scientific process  by allowing us to process and make us of more  data than ever before. 

Another good example, and potentially more concrete, is the Russia-Ukraine war. 

We've all seen the images of tanks lining up ready to enter Kiev. 

AI can help assess satellite imagery with superhuman speed and precision,  so Ukrainian forces can respond faster. 

At Scale,  we’re using our platform to do damage assessment  in key areas affected by the war. 

We’ve rapidly analyzed over 2,000 square kilometers of Ukraine,  identifying over 370,000 structures,  including thousands not previously available via other datasets. 

We focused on Kiev, Kharkiv and Dnipro,  in which we provided some data directly to government and users. 

We also made the data publicly available to the broader AI community via Scale. 

We can also use this data to  maximize allocations of resources,  people or commodities. 

It’s clear satellite data can be extremely useful  in these types of situations. 

Thanks to satellite data, AI can analyze if planes or tanks  have been moved from one place to another. 

This is called change detection. 

Algorithms can constantly be monitoring for this kind of data,  and if it notices a change or movement,  it will alert a human to further investigate,  otherwise known as predictive modeling. 

AI can also help us understand the economic impacts of war. 

We can use AI to track farmland in Ukraine  and measure the agricultural damage in real time. 

Ukraine is a major food supplier for much of the world. 

Understanding these impacts is absolutely critical. 

In conclusion, AI is not something to be feared,  but it’s a tool that can be used to better understand…  that needs to be better understood,  and has the potential to transform our lives for the better. 

AI enables us to make use and sense of massive amounts of data  that has historically been beyond human capacity. 

It allows us to add intelligence and nuance  to automated systems that will dramatically improve humanity. 

Areas like health care and agriculture. 

This then allows humans to do what they do best. 

Take this information, put it into context with sensitivity,  to strategize and act in a timely manner. 

AI is a supercharger for humanity. 

When AI is better than humans,  it makes humans better. 

AI will automate repetitive tasks  that don’t require constant human judgment or creativity,  which frees us up to explore and focus on fresher, newer ideas. 

AI will enable us to be even more creative and more idea-driven,  which I personally find incredibly exciting. 

It allows us to embrace the generative aspects of human nature,  so we can run faster with ideas  and build better and more powerful solutions  to the world’s biggest problems. 

That’s why I believe that human-led AI is the path forward,  and I’m proud to usher all of us into a future with human-led AI. 

Thank you.





这几年,硅谷有一家SaaS公司的表现非常亮眼,光看下图的增长曲线,剔去我们熟悉的Slack、Shopify、twillio,谁最厉害?


无疑是那条陡峭的橙色曲线——Scale。从0到估值73亿美元只用了五年,ARR从0到1亿美元只用了四年,Scale几乎是SaaS公司里最快达到这些数字的。


Scale的创始人Alexandr Wang出生于1997年,父母都是Los Alamos National Lab的物理学家。他的名字从Alexander去掉了一个e,因为父母想让他的名字刚好有8个字母,8在中国代表着好运。他本身非常优秀,大学被麻省理工录取,大一满绩,之后辍学。辍学之后,他先去了Addepar和Quora工作,也在Hudson River Trading也工作过一小段时间。


2016年,他和另一名来自卡内基梅隆大学的辍学生Lucy Guo和Thiel的一名同事一起组队,进入了YC2016春季营,其实当时的他也不清楚自己创业具体要做什么,只是对市场痛点有一定的洞察。

他曾描述道:“尽管麻省理工有数百名才华横溢、天资过人的学生,但是没有人用AI成功地构建任何东西。我们都在研究人工智能,却都遇到了一大瓶颈——没有好的数据。尽管如此,市面上也没有可以解决这个问题的标准化工具,我们有AWS、Strip 和 Twillio,却没有任何人系统性地解决数据问题,这导致AI和ML的发展止步不前。”

具体来说,他每天打开冰箱的时候,都会想在冰箱里安装一个摄像头,摄像头会告诉他什么时候需要补充哪些杂货,这听起来并不难,但他根本做不到,因为没有适用的数据工具。

因此,他们决定做Scale。

Alexandr确实精准地击中了市场痛点,因此Scale发展地顺风顺水:

2016年6月,Scale正式成立,YC投资了12万美元换取公司7%的股份。

2017年7月,Accel领投450万美元A轮。

2018年,完成1800万美元B轮,同年,Scale进军自动驾驶领域,并且拿下了许多行业内赫赫有名的客户,比如GM、Cruise、Lyft、Zoox和nuTonomy,标注的数据超过20万英里。

2019年8月,完成Founders Fund的Peter Thiel领投的1亿美元C轮,跟投包括Accel、Coatue Management、Index Venture、Spark Capital、Thrive Capital、Instagram的创始人Kevin Systrom和Quora的CEO Adam d’Angelo。此时的Scale正式迈入独角兽行列,估值十亿美元。同年,Scale宣布扩展行业领域,拿下了OpenAI和Lyft这种其他行业的头部用户。


2021年1月,以35亿美元估值完成老虎基金领投的1.5亿美元D轮融资,同时宣布进军标注之外的新业务,发布Nucleus。

2021年4月,以超过70亿美元估值完成来自Greenoaks Capital,Dragoneer和Tiger Global的3.25亿美元E轮融资

至此,可以说,Scale是个彻头彻尾的资本宠儿。

从团队到业务,它拥有一切硅谷宠儿的标签:AI、API、YC、野心勃勃、年轻、才华横溢、大学辍学创业、行业洞察。

Scale一扫早期的包工头形象,俨然已经是一家性感的AI/ML公司。而相比其他AI/ML公司,它又不受“红颜薄命”的诅咒,就连Peter Thiel都说:“在激烈的竞争中,AI公司们会出现又消失,但是Scale会一直存在。”





防止再次失联,请立即关注备用号





— 往期精彩英语演讲集 —

英伟达创始人黄仁勋:AI产业的“iPhone时刻”来了!
专访英伟达CEO黄仁勋:我们在AI上的大赌注如何获得回报?
英伟达CEO演讲:ChatGPT是AI领域的iPhone时刻
ChatGPT“狂”,英伟达“飙”!从"游戏之王"到AI巨头
ChatGPT-4震撼发布:能识图和逻辑推理,还能考上斯坦福
人工智能变智障?谷歌版“ChatGPT” Bard首秀大翻车,一夜市值蒸发7000亿元!(附视频&摘要稿)
ChatGPT火爆出圈!“Chat”是“聊天”,可你知道GPT是什么意思吗?(附视频&解说稿)







想第一时间观看高质量英语演讲&采访视频?把“精彩英语演讲”设置为星标就对了!操作办法就是:进入公众号——点击右上角的●●●——找到“设为星标”点击即可。



快分享
要收藏
点个赞
点在看

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
他是美国联邦首席大法官,在儿子的中学毕业典礼上,他居然祝儿子未来不幸且痛苦?(附视频&演讲稿)[神童]12岁女孩成为加拿大史上最年轻的大学毕业生!将继续读生物医学类研究生英伟达创始人黄仁勋台湾大学毕业演讲:不努力觅食,就等着被当成食物…(附视频&演讲稿)【美国春天母亲节献礼4女高音三部曲 舞台艺术节255】春天原创现场舞台:《妈妈是天使》&《游子吟:三春晖》&《春天摇篮》MIT辍学青年,在AI最不智能的角落创造亿万财富“山寨马斯克”!120名华人奔现去见“马斯克”,最后等来个“高仿货”物美老板携外甥“二次创业”,打造30亿美元独角兽,冲刺IPO全球美人那么多,只有她集美貌与才华于一身,让优雅与善良永存世间!(附视频&演讲稿)【美国春天母亲节5年回顾原创三部曲六一钢琴节】我为柳宗元《小石潭记》作曲 &《让我们唱在夏天里》&《卖火柴的小女孩》真人ChatGPT是男?是女?闲说跨年在墨西哥城 (10) -科约阿坎 (野狼谷)不学ChatGPT!加拿大创业公司Cohere再获投资,跻身20亿美元独角兽周末乱吃, 增重1.2 磅年薪百万!14岁天才男孩刚大学毕业,就入职SpaceX核心部门,还自学中文和中国功夫!(附视频&摘要稿)普林斯顿校长2023年毕业演讲:我们必须站起来,为自由表达的价值观而发声!(附视频&演讲稿)年薪1亿美金,40岁TikTok CEO周受资舌战美国议员上热搜:人生开挂的牛人,都有一种对世界复仇般的勤奋…(附视频&演讲稿)华裔男孩被誉为“下一个马斯克”!19岁辍学MIT、25岁成为最年轻亿万富翁……80岁拜登官宣2024年竞选连任美国总统,3分钟视频称美国灵魂之战尚未结束…(附视频&演讲稿)【美国春天母亲节5原创钢琴三部曲 “粉衣蓝裙”不表白庆六一艺术节】《美丽夏天温柔的雨》&《爱的童话》&《雷雨之后》“下一个马斯克”!华裔男孩白手起家,25岁成全球最年轻亿万富翁!教育改变命运,他的成功竟有这些秘密!麻省理工辍学华裔学生 25岁成世界最年轻白手起家亿万富翁史无前例!特朗普确认被起诉,他将成为首位面临刑事指控的美国前总统!(附视频&解说稿)“全球最年轻亿万富翁”扎克伯格和他的三位贵人丨财富密码29年18次访华,比尔·盖茨北京演讲:以创新之力和乐观态度,去应对当前的全球挑战!(附视频&演讲稿)他发明苹果电脑,冒充美国国务卿,出演生活大爆炸…昨天,72岁的他二度受邀在UC伯克利发表毕业演讲!(附视频&演讲稿)2023Q1全球新增独角兽数量同比锐减,中国独角兽平均估值上升丨创业邦《2023Q1全球独角兽企业观察》发布【君在我心】之【云深情也深 】& 【今夜想起你 】& 【爱在我心中】79次掌声!印度总理莫迪美国国会演讲:印度是“民主之母”,将很快成为全球第三大经济体!(附视频&演讲稿)祝亲生儿子不幸和痛苦?在父亲节当天,美国大法官的演讲在全美引起轰动!(附视频&演讲稿)奥巴马父亲节精彩演讲:男人真正的本事并非拥有孩子,而是把孩子培养好!(附视频&演讲稿)在“泰坦尼克”号附近失联的亿万富翁是何许人?【放开你的心】《茶香夜雨》翻唱:爱晚亭&丽莎 视频来自网络素材。加州华裔少年成为福布斯全球最轻亿万富翁! 小三扶正?首富贝佐斯和女友订婚!打破259年历史!郑州小伙傅楷量,成为第一位登上布朗大学毕业演讲台的中国留学生!(附视频&演讲稿)被演戏耽误的企业家!14亿美元,美国运营商巨头T-Mobile收购“死侍”旗下公司…(附视频&摘要稿)历经1191天,逾690万人死亡!世卫组织总干事谭德塞宣布,终结新冠全球紧急状态…(附视频&演讲稿)26岁华裔奇才,成为全球最年轻亿万富翁!44岁德桑蒂斯官宣竞选美国总统,这位特朗普的党内“最强对手”是何来头?(附视频&解说稿)赏画、评画吃旧瓜
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。