Redian新闻
>
三星,没选择3D DRAM?

三星,没选择3D DRAM?

公众号新闻

来源:内容由半导体行业观察(ID:icbank)综合自网络信息,谢谢。


据韩媒TheElec获悉,三星已经组建了一个团队来开发 4F2(特征方形)DRAM。消息人士称,如果这家科技巨头成功,与 6F2 DRAM 相比,它能够将裸片表面减少 30%。


十年前,内存芯片制造商试图将 4F2 商业化,但当时失败了。但现在三星认为,与竞争对手 SK 海力士和美光正在开发的 3D DRAM 相比,这种结构更容易实现。三星的目标是开始将 4F2 结构应用于 10 纳米 (nm) 或以下节点制造的 DRAM,因为它认为从那时起它可以将通道长度缩小多少是有限的。



DRAM 由数十亿个单元组成,这些单元由排列成正方形阵列的晶体管和电容器组成。晶体管具有源极、栅极和漏极,具体取决于电流流入和流出的位置。存储电荷以确定1或0的电容器位于漏极上方。字线和位线分别连接到栅极和源极。字线处理开关(开/关),位线读取和写入数据。之所以这样称呼 8F2,是因为该结构在水平方向上有四个特征(F,或临界维度),在垂直方向上有两个特征,分别用于位线长度和字线长度。


6F2是通过填补8F2的空白空间而开发的。它将晶体管对角放置以减少位线的中断。虽然它被称为 6F2,但它更像是 7.8F2(字线尺寸为 2.6F,位线尺寸为 3.0F)。



三星的 4F2 旨在让晶体管垂直向上。它要从下到上放置源极、栅极、驱动器和电容器。连接字线和位线将使它们的尺寸分别为2F和4F。这将是一个全新的结构。三星最近推出了其 12 纳米 DRAM,但实际通道长度更像是 12.8 纳米。SK海力士也是如此;而美光的12nm其实是13.3nm。三星瞄准 12.3nm 但失败并决定采用 12.8nm。这三个内存芯片制造商的目标是在进入 10nm 之前开发 1nm (1c) 和 10nm (1a)。


10nm以下,三星会推出一代4F2;下一代将使用直接粘合来制作 2 层。




3D DRAM,巨头们的选择


在2021年接受semiengineering采访的时候,三大存储巨头都没有回应关于他们3D DRAM方案的事情。但是Yole在2022年年初曾经报道,三星电子准备开发世界上第一个 3D DRAM,并正在加速 3D DRAM 的研发。


按照Yole的介绍,三星电子已经开始开发一种用于堆叠cell的技术,一种与高带宽存储器 (HBM) 大不相同的堆叠概念。此外,三星电子也在考虑增加DRAM晶体管的栅极(current gate)和沟道(current path)之间的接触面。这意味着三侧接触FinFet技术和四侧接触环栅(GAA)技术可以用于DRAM生产。当栅极和沟道之间的接触面增加时,晶体管可以更精确地控制电流。


在2022年9月接受日本eetimes采访的时候,美光公司也确认正在探索3D DARM的方案。


美光表示,3D DRAM 正在被讨论作为继续扩展 DRAM 的下一步。为了实现 3D DRAM,整个行业都在积极研究,从制造设备的开发、先进的 ALD(原子层沉积)、选择性气相沉积、选择性蚀刻,再到架构的讨论。


美光同时强调,3D DRAM目前碰到的主要问题仍然存在于成本和技术方面。技术挑战存在于广泛的领域,包括设备和结构、制造工艺、制造设备、材料和架构。“为了从平面DRAM转向3D DRAM,需要所有领域的创新。此外,这种转变需要在成本曲线和性能与 DRAM 缩放路线图相交的地方实现。”美光方面强调。


为此美光坦言,该行业继续扩展平面并寻找推进 DRAM 路线图的方法。此外,新的内存架构的开发也在进行中,因此DRAM在系统中的角色正在发生变化,或许有可能在更长时间内维持平面型。“在这一点上,内存制造商正在投资(平面和 3D)以预期拐点以保持 DRAM 的持续扩展,虽然DRAM的每个节点扩展变得越来越困难,但至少在接下来的几年里,传统的扩展将继续下去。”美光方面接着说。


Yole则表示,美光提交了与三星电子不同的 3D DRAM 专利申请。美光的方法是在不放置cell的情况下改变晶体管和电容器的形状。


至于SK海力士的3D DRAM方案,网上并没有看到太多介绍。不过Yole强调,SK海力士正在大力投入其中。除此以外,Applied Materials 和 Lam Research 等全球半导体设备制造商也开始开发与 3D DRAM 相关的解决方案。


具体到三大存储巨头在3D DRAM的表示,据businesskorea引述TechInsights 的数据显示,美光自2019年就已经开始了3D DRAM的研究,获得的专利数量是这两家韩国芯片制造商的两到三倍。


TechInsights进一步指出,在内存半导体市场排名第三的美光正积极准备蓝海市场,截止2022 年 8 月将获得 30 多项 3D DRAM 专利技术。相比之下,三星的3D DRAM专利不到 15 项 ,而SK 海力士持有的大约 10 项专利。


此外,国内多家研究机构甚至企业都在投入到3D DRAM的研发当中。中科院微电子所就曾经撰文表示,针对平面结构IGZO-DRAM的密度问题,微电子所微电子重点实验室刘明院士团队在垂直环形沟道结构(Channel-All-Around, CAA)IGZO FET的基础上,研究了第二层器件堆叠前层间介质层工艺的影响,验证了CAA IGZO FET在2T0C DARM应用中的可靠性。


12纳米后,DRAM怎么办?


追求更小的 DRAM 单元尺寸(cell  size)仍然很活跃并且正在进行中。对于 D12 节点,DRAM 单元尺寸预计接近 0.0013 um²。无论考虑使用 DUV 还是 EUV 光刻,图案化挑战都是重大的。特别是,ASML 报告说,当中心到中心(center-to-center)值达到 40 nm 时,即使对于 EUV ,也不推荐使用单一图案化。在本文中,我们将展示对于 12 纳米及更高节点的 DRAM 节点,电容器中心到中心预计将低于 40 纳米,因此需要多重图案化。


存储电容器的 DRAM 单元布局

存储电容器排列成六边形阵列(图 1)。有源区设计规则由位线间距和字线间距决定。


图 1. DRAM 单元网格上的存储节点(黄色)。BLP=位线间距,WLP=字线间距。


对于 0.001254 um²的单元尺寸和略低于 12 nm 的有源区设计规则,38 nm 的位线间距和 33 nm 的字线间距将导致 38 nm 的中心到中心和 32.9 nm 的对角线间距。


对于 0.33 NA EUV 系统,六边形阵列将使用六极照明(hexapole illumination),其中每个极产生三光束干涉图案(图 2)。四个象限极产生与其他两个水平极不同的模式。这导致具有独立随机性的两个独立剂量分量。这些被添加到最终的复合模式中。


图 2. DRAM 存储模式的六极照明由 4 个象限极(灰色)和两个水平极(黄色)组成。根据照明方向,生成的三光束干涉图案具有特定方向。


由于特征边缘处大量吸收的光子散粒噪声,图案放置误差的随机效应非常显著,正如参考文献中已经公开的那样。1,很容易超过 1 nm 的覆盖规格。较低的吸收剂量似乎明显更差(图 3)。


图 3. 38 nm x 66 nm cell(字线间距 = 33 nm)中中心柱的随机放置误差(仅 X),在 0.33 NA EUV 系统中具有预期的六极照明。这里显示了两个吸收剂量的一系列 25 个不同实例。


转到 0.55 NA 会增加焦点深度严重降低的问题。NA 为 0.55 会导致 15 nm 散焦,导致最内层和最外层衍射级之间的相移 >50 度(图 4),这会由于褪色严重降低图像对比度。


图 4. 0.55 NA EUV 系统上的 15 nm 散焦导致最内层和最外层衍射级之间的相移 >50 度。


因此,存储节点图案很可能需要由两个交叉线图案形成(图 5)。每个交叉线图案可以通过 EUV 单次曝光或 DUV SAQP(自对准四重图案)形成。两种选择都是单掩模工艺。SAQP 工艺更成熟(早于 EUV)并且没有 EUV 的二次电子随机问题,因此它应该是首选。尽管如此,对于 SAQP 情况,间隔线必须在布局和线宽粗糙度方面得到很好的控制。


图 5. 存储节点图案可以由两个交叉线图案的交叉点形成。


三星还展示了一种二维间隔蜂窝图案,而不是线型 SAQP,它使用具有起始蜂窝图案的单个掩膜,而不是具有起始线图案的两个掩膜。


虽然上述情况考虑了 38 nm 位线间距和 33 nm 字线间距,但由于六边形对称性,它也适用于交换间距的情况(33 nm 位线间距和 38 nm 字线间距)。


DRAM 技术,趋势和挑战

图 6 显示了来自三星, 美光, SK海力士,Nanya, PSMC, and CXMT厂商的 DRAM 路线图。三星、美光和 SK海力士三大厂商已经展示了适用于 DDR4、DDR5 和 LPDDR5 应用的具有 15nm 和 14nm 级单元设计规则 (D/R) 的 D1z 和 D1a 产品。三星已在 D1x DDR4 试用车(TV) 产品和 D1z LPDDR量产产品中采用 EUV 光刻技术,而美光和 SK 海力士则为 D1z 代保留了基于 ArF-i 的双图案化技术 (DPT) 工艺。到 2030 年,将生产出D1d(或 1δ)、D0a(或 0α)和 D0b(或 0β)等设计进一步缩小的几代 DRAM。


图 6.由TechInsights 提供的 DRAM 路线图,显示 2020 年至 2022 年市场上商业化的 D1z 和 D1a DRAM 产品。到 2030 年,将生产出D1d(或 1δ)、D0a(或 0α)和 D0b(或 0β)等几代产品。


图 7. DRAM 设备的技术/应用路线图显示 6F2 1T+1C 单元设计扩展到更多下一代 DRAM,尽管 DRAM 厂商一直在开发 4F2 单元结构,例如 1T DRAM 或无电容器 DRAM 原型。


到目前为止,已经有了 8F2 和 6F2 DRAM 单元设计,其中单元包括 1T(晶体管)和 1C(电容器)。这种 1T+1C 单元设计将用于未来几代 DRAM 的 DRAM 单元设计。然而,由于工艺和布局的限制,DRAM 厂商一直在开发 4F2 单元结构,例如 1T DRAM 或无电容器 DRAM 原型,作为扩展 DRAM 技术的下一个候选者之一(图 7)。具有 B-RCAT 结构的大块鳍(或鞍鳍)用于单元存取晶体管,然而,掩埋字线栅极材料已经从单钨层变为多晶硅/钨双功函数层,以有效控制栅极泄漏。在这种情况下,具有较低功函数的多晶硅上栅极提高了 GIDL 电场 (30%) ,增大了扩散电阻。此外,美光使用纯 TiN 栅极进行 D1z 和 D1α 代单元集成。虽然圆柱型结构是DRAM单元电容器集成的主流,但SK海力士(D1y和D1z)和三星(D1z)采用了准柱状电容器(或单面柱状电容器)结构,其中单元电容器仅外表面呈圆柱状,这导致单元电容比上一代更小。几年后,DDR5、GDDR7、LPDDR6 和 HBM3 产品将在市场上普及。


对于 10nm 级及以上的 DRAM 单元设计,应在其中加入更多创新的工艺、材料和电路技术,包括更高 NA EUV、4F2、1T DRAM、柱状电容器、超薄 high-k 电容器介质和低 -k ILD/IMD 材料(图 8)。


图 8. 从 30nm 级到 10nm 级的 DRAM 单元设计和技术趋势。需要更多创新技术来满足单元电容、尺寸缩小和提升速度的要求。


图 9 显示了主要厂商的 DRAM 设计规则 (D/R) 趋势。如果他们保持 6F2 DRAM 单元设计以及1T+1C 结构,2027 年或 2028 年 10nm D/R 将是DRAM 的最后一个节点。DRAM 单元微缩将面临若干挑战,例如 3D DRAM、减少row hammer(电路)、低功耗设计、刷新降低和管理刷新时间、低延迟、新功函数材料、HKMG 晶体管和片上 ECC。最受欢迎的功能将是“速度”和“感应裕量(sensing margin)”。三星用于 DDR5 和 GDDR6 的 HKMG 外围晶体管技术就是增加 BL 感应裕量和速度的一个例子。


图 9. DRAM D/R 趋势显示 6F2 单元设计的局限性。2027 年或 2028 年,10nm D/R 将是 6F2 DRAM 的最后一个节点。

*免责声明:本文由作者原创。文章内容系作者个人观点,半导体行业观察转载仅为了传达一种不同的观点,不代表半导体行业观察对该观点赞同或支持,如果有任何异议,欢迎联系半导体行业观察。


今天是《半导体行业观察》为您分享的第3414期内容,欢迎关注。

推荐阅读

谈谈模拟存内计算!

英伟达“疯”了,盘后大涨25%,GPU销量激增

功率半导体,尘埃未定!


半导体行业观察

半导体第一垂直媒体

实时 专业 原创 深度


识别二维码,回复下方关键词,阅读更多

晶圆|集成电路|设备|汽车芯片|存储|台积电|AI|封装

回复 投稿,看《如何成为“半导体行业观察”的一员 》

回复 搜索,还能轻松找到其他你感兴趣的文章!


微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
Spring 干掉原生 JVM?!三星,入局八英寸氮化镓代工最航运 | SM集团筹集35亿美元收购HMM?要做亚洲第一?但是闲话台积电将在此地建晶圆厂?主攻12nm?有盘两天售罄,有盘竟没选完,放宽申购条件后的深圳人才房咋样了?枕头没选对,颈椎很遭罪!今天就更换枕头,天天都舒坦当成年人撑不住了,他们选择30+转行Chiplet时代,如何玩转DRAM?那夜的邂逅---北京的春天选择比努力更重要?有多少留学生“输”在了没选对学校服了,国产山寨锈湖上架Steam?《2077》现已特别好评!(古詩詞英譯) 白梅 – 王冕难怪我穷原来是没选好行业,早听大哥的玩文玩就好了赶超苹果三星,中国智能手机的供应链突围之道财阀三星,也没有余粮了2025年前后将超过x86和ARM?RISC-V出货量已破百亿,中国市场是主力5036 血壮山河之武汉会战 鏖战幕府山 53D版「分割一切」来了!NUS华人团队最新模型,单视图重建3D,又快又准为什么说2023年,你一定要懂BIM?一个提升颜值的小东西,没选对真的很伤眼!三星死磕折叠屏,三星困于折叠屏三星,进军GaN代工绕开算力限制,如何用单GPU微调 LLM?这是一份「梯度累积」算法教程我劝烂了,医学生还有谁没用过GraphPad Prism?从此告别丑图表!大财阀三星,居然也没有余粮了!枕头没选对,颈椎很遭罪!前理想AI芯片一号位骄旸加入三星,负责组建GPU团队|36氪独家人均6800的米其林三星,用餐后上吐下泻?市监部门已介入一直减肥但一直肥?只因没选对运动时间!PNAS最新:这个时间运动,“燃脂”效果更佳我与冷明3D打印进展|食品、人体器官、火箭……3D打印正向诸多领域延展台积电放弃28nm工厂,改建2nm?三星,加速进军HBM三星,步步紧逼台积电
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。