Redian新闻
>
全球首创 :分子之心开源新AI算法,攻克蛋白质侧链预测与序列设计难题

全球首创 :分子之心开源新AI算法,攻克蛋白质侧链预测与序列设计难题

公众号新闻

机器之心专栏

机器之心编辑部

PSCP 深度架构 AttnPacker——大幅优化的AI算法。


蛋白质结构和功能的形成,很大程度上取决于侧链原子间的相互作用,因此,精准的蛋白质侧链预测(PSCP)是解决蛋白质结构预测和蛋白质设计难题的关键一环。但此前蛋白质结构预测大多聚焦于主链结构,侧链结构预测始终是一个未被完全解决的难题。


近日,分子之心许锦波团队推出一种新的 PSCP 深度架构 AttnPacker,在速度、内存效率和整体精度方面取得大幅提升,是目前已知的最优侧链结构预测算法,也是全球首创的可同时进行蛋白质侧链预测和序列设计的 AI 算法。


论文发表在《美国科学院院刊》(PNAS)上,其预训练模型、源代码和推理脚本都已在 Github 上开源。



  • 论文链接:https://www.pnas.org/doi/10.1073/pnas.2216438120#supplementary-materials

  • 开源链接:https://github.com/MattMcPartlon/AttnPacker


背景


蛋白质由数个氨基酸折叠而成,其结构分为主链和侧链。侧链的差异性对蛋白质的结构与功能有巨大影响,尤其是生物活性。基于对侧链结构的清晰认知,科学家们能够更精准地测定蛋白质三维结构,解析蛋白质 - 蛋白质之间的相互作用,并进行理性蛋白设计。应用到药物设计领域,科学家们便能更快、更准确地找到适合药物与受体的结合点位,甚至根据需要优化或设计结合点位;在酶优化领域,科学家们可以通过对序列的优化改造,让多个侧链参与催化反应,实现更高效、特异性更高的催化效果。


当前大多数蛋白质结构预测算法主要针对主链的结构解析,但蛋白质侧链结构预测还是一个未被完全突破的难题。无论是 AlphaFold2 等热门蛋白质结构预测算法,还是 DLPacker、RosettaPacker 等专注侧链结构预测的算法,准确度或速度都不尽如人意。这也为蛋白质设计带来了限制。


传统方法,如 RosettaPacker,主要使用能量优化方法,先对侧链原子的分布进行分组,再针对某个特定氨基酸来搜索侧链的分组,寻找能量最小的组合。这些方法主要区别于研究者对旋转异构体文库、能量函数和能量最小化程序的选择,准确性受限于对搜索启发式方法和离散抽样程序的使用。业界也有基于深度学习的侧链预测方法,如 DLPacker,它将 PSCP 表述为图像到图像的转换问题,并采用了 U-net 模型结构。但预测精度和速度依然不够理想。


方法


AttnPacker 是一种端到端的预测蛋白质侧链坐标的深度学习方法。它联合模拟了侧链相互作用,直接预测的侧链结构在物理上更可行,具有更少的原子碰撞和更理想的键长和角度。


具体而言,AttnPacker 引入了一种利用 PSCP 的几何和关系方面的深度图转换器架构。受 AlphaFold2 启发,分子之心提出了位置感知三角形更新,以使用基于图形的框架来计算三角形注意力和乘法更新,从而优化成对特征。通过这种方法,AttnPacker 的内存显著减少并拥有更高容量的模型。此外,分子之心探索了几种 SE (3) 等变注意力机制,并提出了一种用于从 3D 点学习的等变变换器架构。


AttnPacker 运行流程。以蛋白质主链坐标和序列作为输入,并基于坐标信息导出空间特征图和等变基。特征图由不变量 graph-transformer 模块处理,然后传递给一个等变的 TFN-Transformer 输出预测的侧链坐标、每个残基的置信度分数和可选的设计序列。预测坐标经过后处理,以去除所有空间冲突,并确保理想化的几何结构。


效果


在预测效果上,AttnPacker 对天然和非天然主链结构都显示出准确性和效率上的改进。同时保证了物理上的可行性,与理想键长和角度的偏差可以忽略不计,且产生了最小的原子空间位阻。


分子之心在 CASP13 和 CASP14 天然和非天然蛋白质主链数据集上对 AttnPacker 与目前最先进的方法 ——SCWRL4、FASPR、RosettaPacker 和 DLPacker 进行对比测试。结果显示,AttnPacker 在 CASP13 和 CASP14 天然主链上显著优于传统蛋白质侧链预测方法,平均重建 RMSD 比每个测试集上的次优方法低 18% 以上。AttnPacker 还超越了深度学习方法 DLPacker,平均 RMSD 降低了 11% 以上,同时也显著提高了侧链二面角精度。除了准确性,AttnPacker 的原子碰撞明显少于其他方法。


给出天然主链结构时,各算法在 CASP13 和 CASP14 目标蛋白上的侧链结构预测结果。星号表示平均冲突值低于天然结构 ——CASP13 为 56.0、5.9 和 0.4,CASP14 为 80.4、7.9 和 2.5。

在 CASP13 和 CASP14 非天然主链上,AttnPacker 也明显优于其他方法,原子碰撞也明显少于其他方法。


给出非天然主链结构时,各算法在 CASP13 和 CASP14 目标蛋白上的侧链结构预测结果。星号表示平均冲突值低于相应天然结构 ——CASP13 的 34.6、2.2、0.5 和 CASP14 的 40.0、2.7、0.7。

创新性地摈弃了离散的旋转异构体库以及计算上昂贵的构象搜索和采样步骤,直接结合主链 3D 几何结构来并行计算所有侧链坐标。AttnPacker 与基于深度学习的方法 DLPacker、基于传统计算方法的 RosettaPacker 相比,计算效率显著提高,减少了 100 倍以上的推理时间。


不同 PSCP 方法的时间比较。重建所有 83 个 CASP13 目标蛋白的侧链原子的相对时间。


AttnPacker 在蛋白质设计上的表现同样优秀。分子之心训练了一个 AttnPacker 变体用以协同设计,该变体可实现媲美当下最先进的方法的天然序列恢复率,同时还可生产高度精确的组装。Rosetta 模拟验证显示,AttnPacker 设计的结构通常会产生亚原生(更低的)Rosetta 能量。


用 ESMFold scTM 和 plDDT 指标对比天然蛋白质序列和 AttnPacker 生成的序列,以评估 AttnPacker 的生成质量,结果表现出强相关性。


除了效果和效率惊人之外,AttnPaker 还有一个非常实用的价值 —— 它非常易用。AttnPaker 只需要一个蛋白质的结构文件即可运行。相比之下,OPUS-Rota4 (28) 需要来自 DLPacker 的原子环境的体素表示、来自 trRosetta100 的逻辑、二级结构和来自 OPUS-CM 输出的约束文件。另外,由于 AttnPacker 直接预测侧链坐标,输出是完全可微分的,这有利于下游预测任务,例如优化或蛋白质 - 蛋白质相互作用。“预测效果好、效率高、易用,这些优势有利于 AttnPacker 在研究和工业领域的广泛使用。” 许锦波教授表示。


总结


1、AttnPacker 是一个用于直接预测序列和侧链坐标的 SE(3)等变模型,可以用于蛋白质侧链结构预测,也可用于蛋白质序列设计,是一项开创性的工作。


2、AttnPacker 的准确性优于其他方法,且效率大幅提升,并具备极高的易用性。


© THE END 

转载请联系本公众号获得授权

投稿或寻求报道:[email protected]

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
道人笔记(二十五)缙云山初见师尊面,草堂内惊闻旧时梦中国学者突破表面码重复多轮纠错难题,攻克量子计算可扩展化和实用化关键技术英特尔开源新等宽字体,称可保护开发者视力【宏观市场】分化的信号—4月宏观经济指标预测与5月政策前瞻Bioinformatics | 来鲁华/邓明华合作:多层级的图神经网络促进蛋白质功能预测OpenAI 开源新模型代码,一步成图,1 秒 18 张刘如谦新公司浮出水面,仍隐匿运行,正基于PACE开发新型蛋白酶,让蛋白质组编辑成为可能20年、60亿人民币、7000种蛋白质,SomaLogic蛋白质组数据库的构建之途AI设计蛋白质新方法登Science!利用强化学习,直接根据预想优化结构【宏观市场】政策预期的校准期—6月宏观经济指标预测与7月政策前瞻蛋白设计新时代!Science: 开发出基于强化学习的蛋白结构设计方法道人笔记(二十六)随因缘心生跟随意,除疑惑拜师乾坤宫钮祜禄·Meta:发布最强开源新模型Llama 2,拉拢微软做盟友|最前线1000篇范文+1000则素材+1000个方法,攻克难点获高分哈佛教授捐赠2.1亿美元用于蛋白质创新研究,计划加速蛋白质和抗体发现CVPR 2023 | 精准、通用、轻量!EqMotion:等变轨迹预测与不变关系推断模型全球首家SPAC上市分子农业公司再推新成果,让大豆富含动物蛋白,含量占比高达26%这道难关攻不下三年级滑坡,攻克了就一路逆袭......六十三 影响腾讯提出蛋白质研究 AI 模型,预测准确率刷新纪录,入选 Nature 子刊终结扩散模型:OpenAI开源新模型代码,一步成图,1秒18张【宏观市场】等风来—5月宏观经济指标预测与6月政策前瞻财务自由是怎样炼成的――两家华人披荆斩棘殊途同归蛋白质领域的ChatGPT,首次使用对比学习准确预测酶功能招募胃癌/胰腺癌患者@北京肿瘤医院主研及国内 21 家医院I全球同类首创的、靶向CLDN18.2蛋白质的自体CAR-T细胞重磅内幕:OpenAI即将开源新模型!开源社区的繁荣,全靠大厂「施舍」?AI帮助人类打破十年算法瓶颈:谷歌 DeepMind 发现更快排序算法,已集成到C++库中国学者引领图神经网络技术的重要突破,再次刷新了蛋白质性能预测榜单记录蛋白质侧链预测新方法DiffPack:扩散模型也能精准预测侧链构象!南洋理工教授:学生成绩预测与影响因素分析|收获一作论文与导师推荐信!Science|AI带来又一突破,或将蛋白质设计带入新时代预测超长蛋白质这事,CPU赢了50年经验烘焙大师倾力加持!元气怪兽xKiri巴斯克蛋糕,进口芝士含量高达30%+,口感真绝了~《情是故乡浓》&《故事终章》英国政府资助研究:AI识别收割西兰花非食用部分,蛋白质比大豆蛋白更可持续
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。