教科书级数据is All you Need: 1.3B小模型逆袭大模型的秘密
论文链接:
1、Prompt engineering 这可能是最重要 / 棘手的部分,因为作者大量使用 promp 来引导 GPT-3.5 生成预训练的教科书和 SFT 代码练习。显然,大部分性能提升来自这个阶段。我进一步的假设是:
如果将这些数据用于继续训练 GPT-3.5 本身,即教师模型,它也会有进一步改进的性能,就像之前的 LMSI(Large Language Models Can Self-Improve)论文展示的一样,因此我倾向于将 Phi-1 论文视为推动 LMSI 方法的一大步。 将教师模型更改为在足够多代码上进行预训练的任何预训练模型,也可以获得类似质量的数据,当然,这需要一个良好的基础模型。 综合上述观点,基本上对于任何优秀的基础模型,都可以从基础模型中通过 prompt 合成教科书数据,然后使用模型生成的数据来改进自身,或者蒸馏为更小的专门化变体。
2、能力平衡 从论文的印象来看,我觉得预训练和 SFT 数据可能与 HumanEval 过于接近(并且作者证明没有污染)。基本上,作者构建了一个用于 Human Eval 的训练集。这有多重含义:
为感兴趣的测试问题构建训练集没有问题,我猜测大多数部署的模型都这样做。 然而,它降低了在分布内泛化的挑战程度,尽管对于与推理相关的任务和小型模型来说,这仍然是个挑战。 然而,LLM 最重要的能力在于分布外泛化,因为更大的模型会泛化到远离其训练 / 微调分布的内容。Phi-1 在小模型的分布内泛化方面做得最好(可能是极限),但在 LLM 时代,我们对分布外、少样本泛化更感兴趣。
推动分布内泛化的极限,会以显著降低通用领域能力为代价,如作者所讨论的(也可以参见我们以前的工作:https://arxiv.org/abs/2301.12726)。因此,下一步工作可能落脚于如何进行好的数据混合,以保持编码性能的同时,也能提高通用能力。
总体而言,这是一项令人印象深刻的工作!我学到了很多!
一个经过筛选的代码 - 语言数据集,它是 The Stack 和 StackOverflow 的一个子集,通过使用基于语言模型的分类器获得(包含约 6B token)。
一个合成的教科书数据集,包含不到 1B 个 token 的 GPT-3.5 生成的 Python 教科书。
一个小型的合成练习数据集,包含大约 180M 个 token 的 Python 习题和答案。
LLM分级中非常规问题的评估
更多阅读
#投 稿 通 道#
让你的文字被更多人看到
如何才能让更多的优质内容以更短路径到达读者群体,缩短读者寻找优质内容的成本呢?答案就是:你不认识的人。
总有一些你不认识的人,知道你想知道的东西。PaperWeekly 或许可以成为一座桥梁,促使不同背景、不同方向的学者和学术灵感相互碰撞,迸发出更多的可能性。
PaperWeekly 鼓励高校实验室或个人,在我们的平台上分享各类优质内容,可以是最新论文解读,也可以是学术热点剖析、科研心得或竞赛经验讲解等。我们的目的只有一个,让知识真正流动起来。
📝 稿件基本要求:
• 文章确系个人原创作品,未曾在公开渠道发表,如为其他平台已发表或待发表的文章,请明确标注
• 稿件建议以 markdown 格式撰写,文中配图以附件形式发送,要求图片清晰,无版权问题
• PaperWeekly 尊重原作者署名权,并将为每篇被采纳的原创首发稿件,提供业内具有竞争力稿酬,具体依据文章阅读量和文章质量阶梯制结算
📬 投稿通道:
• 投稿邮箱:[email protected]
• 来稿请备注即时联系方式(微信),以便我们在稿件选用的第一时间联系作者
• 您也可以直接添加小编微信(pwbot02)快速投稿,备注:姓名-投稿
△长按添加PaperWeekly小编
🔍
现在,在「知乎」也能找到我们了
进入知乎首页搜索「PaperWeekly」
点击「关注」订阅我们的专栏吧
微信扫码关注该文公众号作者
戳这里提交新闻线索和高质量文章给我们。
来源: qq
点击查看作者最近其他文章