Redian新闻
>
郭健发声!Quant 4.0:量化投资站在AI新风口上

郭健发声!Quant 4.0:量化投资站在AI新风口上

公众号新闻


中国基金报记者  姚波

中国财富管理市场非常巨大,2021年就已经接近于135万亿人民币的庞大规模,预期2025年会达到170万亿,且现在整个A股市场上40%的成交量是程序化交易。尽管程序化交易不一定是通过量化来实现,主观交易也可以采用这种技术,但这一数据侧面反映出通过机器来做交易的比例。美国市场的程序化交易量占大约是80%,也就是说中国现在的比例差不多是美国的一半,仍可能有巨大增长空间。

量化投资在中国至少发展了十余年。特别是最近几年,越来越多的投资机构宣告采用了人工智能(AI)的技术。经历了三代的快速迭代和发展,量化投资在AI技术的加持下,目前正处在人工智能技术应用的新风口上。

粤港澳大湾区数字经济研究院(IDEA)执行院长、AI金融与深度学习首席科学家郭健博士在论坛上,解析了以下一代AI技术驱动的量化投资新范式Quant4.0,提出了当下量化投资面临的技术问题,并通过对IDEA研究院在这一新型交叉领域研发的成果介绍,展望了行业发展的新机遇和新挑战。

三代量化投资范式快速迭代

严格上来讲,量化投资的诞生要从第一篇数学论文应用到金融领域的研究算起,距今已经有差不多100年的历史。而量化投资真正成型大概是从20世纪50年代哈里•马科维茨发表资本资产定价模型(CAPM)理论之后,套利性交易、超额收益等各种新型的投资策略涌现。整个过程中,有超过12位诺贝尔经济学奖的获得者做出了非常卓越的贡献,包括最近几年越来越火的深度学习、因果推理中,也有多位的图灵奖的获得者的身影,为这个领域注入了诸多的活力。

随着技术的发展,量化投资产业快速发展,整个产业的形态也在快速进化。郭健将最早期的量化投资定义为Quant 1.0,它可能是一个哈佛、麻省理工的教授,带着几个学生、小作坊式的就做起来了,是一种精英小作坊式生产。精英公司有一个天然的问题,就是稳定性会比较差,因为它过分依赖个人的天赋。

为了解决这个问题,10余年前,美国出现了一家公司叫World Quant,标志着Quant 2.0时代的到来。这家公司被称作对冲基金行业的富士康,进行工厂流水线式的生产。这家公司在全球雇佣了成千上万人来做所谓的量化策略,然后总部大概有100个基金经理把这些策略融合在一起。它的好处就是告别了精英小作坊式的模式,可以进行快速更替,据说它在过去10年积累了超过1000万个金融信号,对其金融系统的稳定性带来一定的帮助。但很快新的问题出现了,就是边际效用递减,因为不是说人越多投资做得越好。经营上会有一个平衡点,随着雇佣人数增多,加上行业薪资水涨船高,总有一天成本会撑不住。

为了解决这个问题,近年如深度学习等越来越多的新技术应用到了量化投资的领域,特别是日线T+1交易、日内的T+0、或者中高频的交易,这些比较适合深度学习的任务,因为此时已经积累了足够多的样本。Quant 3.0时代由此开启。机器学习可以从大量重复的样本中找到很多历史的规律,并将历史规律应用于未来的预测。

最近三年这一应用效果不错,但是Quant 3.0很快遇到新的问题。问题有三:第一是它的成本依然非常高,相当于是以算力换人力,但算力成本也非常高,第二就是调大模型的人力成本比挖掘因子的人力更贵,所以相当成本转嫁,并没有特别显著的降低成本。而且深度学习是黑盒子,你也说不清楚为什么赚钱,为什么赔钱。第三就是这种模式只适合中频到中高频的交易,但它这类交易的市场容量是很有限的。

因而,包括像价值投资、全球宏观等大规模的资产配置产品如何更好应用AI技术,这是下一代量化投资应该重点考虑的,所以郭健提出了Quant 4.0这个新的概念,并相应做了很多的系统性研究工作。

Quant 4.0:下一代人工智能投资工具

Quant 4.0为了解决前面三个问题,分别对应三个要素:第一是自动化AI,让AI建模本身自动化,取代人工的建模,从而降低成本。第二叫可解释AI,可以让看不见、摸不着的系统,变得对投资人或者背后的LP(有限合伙)来讲是透明的,可靠的,可信的。第三就是面向未来,如何将价值投资,或者像VC、PE等长期投资机构分析的逻辑很好地融合到AI的技术中,而不是简单的机器学习。比如有没有可能说,AI的技术通过学习到大量的世界顶级分析师的分析方法论,使它具备智能?

Quant 4.0第一个要素就是自动化AI。自动化AI本质上要解决一个问题,就是算法生成算法,模型创造模型。传统的量化投资,简而言之就是数据预处理,因子挖掘、建模,然后进行投资组合的优化,再进行交易,实盘拆单、交易执行、产品优化,最后是风险暴露、风险分析。现在要把整个流程实现自动化,这里面有两个关键的环节,一个就是足够快,系统必须得比现有量化系统至少再快两到三个数量级,才能够形成具有实用价值的全流程的自动化。第二个就是说,你挖掘的空间、数据的容量得非常大,以因子挖掘为例,现在除了传统的量价、高频数量外,越来越多的另类数据也被包括进来,像基本面分析,如新闻舆情、公告文本,和公司上下游产业链等等。如何进行快速的预处理,系统如何可以自动的从数据中挖掘出好的金融信号,是Quant 4.0面临的问题。

这一过程本质上也是在模拟人思考,或者人在做量化投资分析的过程。因为研究的英文叫research,拆开就是叫repeat的search,就是反复的搜索,郭健表示其采用的技术也是,用系统、用算力模拟人思考,在一个空间里反复搜索,这样来提升整个量化投研的效率。

一旦有了好的金融信号,通过深度学习或者其他的机器学习模型,合并成可以用以交易的策略,这个过程,郭健表示也进行了大量的自动化优化。人在进行手工建模的时候,大量的调参,大量的数据测试,这些工作不应该由分析师和投研人员来浪费时间,应该把它交给系统,系统在底层自动化地高效地完成。

人的作用是什么?人的作用就是启发这个系统,让它朝着最有价值的方向去进行搜索,然后去进行发现。所以郭健表示,也做了一个AlphaGPT,这里的Alpha是指投资信号的α(超额收益 )。人与大模型、人与AI之间通过互动交流,反复的多轮的思考,快速地构建出所需要的金融信号和金融的模型。

Quant 4.0 另两大特点

Quant 4.0第二个要素就是可解释AI,金融行业尤其需要可解释,不然赚了钱还好说,亏了都搞不清楚怎么赔的。

可解释AI,就是把这个黑盒子打开,打开的本质是什么?郭健表示,要打开的是这些难以解释的技术。如深度学习模型,它可能光参数量就有上亿个甚至几十亿个,这么多的参数是不可能解释的。所谓的可解释,不是说你有一个线性模型就叫可解释,可解释是说模型的性能、预测能力强的前提下,能把可解释的部分来进行解释。

郭健表示,其构建的系统搭建了很多可解释的底层技术,并且把它融入到系统里面,从宏观到微观进行多层面的可解释。比如说对追踪龙头股等可理解的行为特征来进行解释,能对黑盒子模型产生的结果有一个更好的理解,来降低投资的风险。

第三个就是面对更大容量的量化投资,特别是像更长周期的价值投资怎么做?这里面有一个明显的问题就是,价值投资属于低频投资,低频投资什么意思?你持仓可能是一年、两年,甚至更长时间,投资追求的是基本面本身的增长,这会导致没有足够样本。因为价值投资可能两年才会产生一个投资的样本,这就导致深度学习、机器学习没有办法学。

郭健在此提出的理念,就叫数据不够、知识来凑。传统上,机器学习在高频上追求的是数据的深度,所谓的深度就是说同样一个交易行为反复的出现,根据统计学的大数定律,你找出其中的规律,把规律用于其中的预测,这个胜率就会比较可靠。但是,当你没有足够多历史数据,就要通过横向的扩张来拓展数据的宽度,这个宽度就来自于各种类型的非传统的应用数据,包括各种另类数据,包括其构建的大型金融行为的知识图谱。

知识图谱其实就是一张巨大的网络,这些节点就是各种金融的实体,可以是上市公司,与这个公司有关的贷款银行,有业务往来的上下游产业链企业,或者公司背后的股东、公司的法人,或者与公司正在打官司的其他的公司,公司的竞争对手等等,都可以融入到这一张巨大的图谱里。郭健表示,现在已经做出了一个有1.6亿个节点组成的巨大的网络。

实际上,通过把大模型技术与知识图谱技术相融合,让它在一定程度上达到一个初级的金融分析师的思考逻辑,比如说进行行业穿透式的分析。传统大模型像ChatGPT难以做深度思考,所谓的深度思考就是需要一个很长的推理链,来完成对市场的理解,但融合了知识图谱技术之后就可以做到。

知识图谱通过这种大模型,在巨大的网络上来进行推理,一步一步地把结果推出来,形成对未来市场的分析和看法。郭健指出,这个过程要说它推得有多准,目前从技术上还难以保证。至少可以保证的是,它推理过程在逻辑上是自洽的,从而可以形成多条推理链,给金融分析师提供参考,分析师再通过自己对市场真正的理解结合与大模型的互动,优化大模型推理的结果。

不过,现在Quant 4.0还面临诸多挑战。挑战之一就是系统层面的复杂性,整个系统从底层的算力系统,到数据体系、知识图谱、推理引擎及最后应用的层面都比较复杂。郭健表示,如果要融合海量知识,并且对于这些海量知识进行快速推理,这对系统背后的系统低延时性、高并发性、系统吞吐量、系统本身智能化的算法要求是非常高的,这也导致开发的成本比较高。

但是,面向未来体量巨大的价值投资市场,量化交易的投入产出比还是比较划算的。其它一系列的问题还包括基础设施上面临的问题,数据、算法以及建模上的挑战等等。未来最大的一个挑战之一是算力本身的问题,需要通过不断对算力的增持和优化来解决问题。

编辑:舰长

审核:木鱼



版权声明

《中国基金报》对本平台所刊载的原创内容享有著作权,未经授权禁止转载,否则将追究法律责任。


授权转载合作联系人:于先生(电话:0755-82468670)


微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
胡崇海:量化投资的归去来国际重奢𝘼𝙦𝙪𝙖𝙨𝙘𝙪𝙩𝙪𝙢中长款风衣,品位与优雅,兼顾帅气和女人味!火了172年!国际重奢𝘼𝙦𝙪𝙖𝙨𝙘𝙪𝙩𝙪𝙢来了,又好穿又有品!!换季大捡漏!国际重奢𝘼𝙦𝙪𝙖𝙨𝙘𝙪𝙩𝙪𝙢短袖买一送一!库存不多,手慢无!北美天气大热万亿市场的新风口,中金公司已成立新部门抢招新风口人才!1折入!国际重奢𝘼𝙦𝙪𝙖𝙨𝙘𝙪𝙩𝙪𝙢雅格狮丹三防夹克,下单送长袖T恤!量化投教| 影响超额收益表现的因素有哪些?加入新能源,在风口上收获十倍速的个人成长|红利招聘·秋招季不到赤道非好汉——巴西BR174公路纪行换季大捡漏!国际重奢𝘼𝙦𝙪𝙖𝙨𝙘𝙪𝙩𝙪𝙢经典纯色T恤,买一送一!真没想到!国际重奢𝘼𝙦𝙪𝙖𝙨𝙘𝙪𝙩𝙪𝙢(雅格狮丹)风衣都让我们找来了(1折限时抢)彭博终端有妙招 | MIPD和LQA:量化风险早预警,未雨绸缪(实操视频)路边的野花1折入!穿过国际重奢𝘼𝙦𝙪𝙖𝙨𝙘𝙪𝙩𝙪𝙢的男人,才会明白什么是品质!6001 血壮山河之随枣会战 “和平运动 ”1硬件战争、算力竞赛、天才博弈:量化内卷时代的破局者从三种经济发展模式谈谈量化投资穿越漫长的季节,ETF站在风口上求职干货 | Jane Street 2024 秋招已开!海外求职:量化(交易、风控、研究)《2023年度产业智能化投资人》榜单揭晓丨AI时代风口下的投资新力量重磅!2024新风口已经降临,全球精英大佬都在投资这个增长点!量化投资如何"祛魅"?泓德基金李子昂:量化是一种投资思维,总体Alpha比较显著重磅!潘功胜、李云泽发声!"国家队"进场抄底,华为大消息,A股"沸腾"?周末影响一周市场的十大消息彭博终端有妙招 | BQuant Enterprise演示视频:更快更好的量化投研工具七大策略规模以上机构9月业绩快报:量化股票多头策略重回榜首中国量化投资季刊2023秋刊发布10月风口上的题材,抓紧看!人类文明的产生和发展(第二章摘要)英华号周播报|程序化交易是量化投资的专属工具吗?Nature报道CRISPR 2.0:新一波基因编辑即将进入临床试验;1.0:刚刚获批上市量化投资,拥抱更多可能性𝘼𝙦𝙪𝙖𝙨𝙘𝙪𝙩𝙪𝙢三防夹克,经典、优雅不凡的英伦风!还送长袖T恤!1折入!穿过国际重奢𝘼𝙦𝙪𝙖𝙨𝙘𝙪𝙩𝙪𝙢的人,才是真正的有品!58万人获得稳定收入,探店正在成为风口上的新职业
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。