Redian新闻
>
Awesome!多任务学习宝藏资料

Awesome!多任务学习宝藏资料

公众号新闻

每天给你送来NLP技术干货!



作者 | WeiHongLee 

整理 | NewBeeNLP


最近冲浪发现一份多任务学习宝藏资料,包含了领域综述、论文、代码等内容,分享给大家。感谢作者的整理,有帮助记得start噢!

  • https://github.com/WeiHongLee/Awesome-Multi-Task-Learning

Table of Contents

  • Survey & Study
  • Benchmarks & Code
  • Papers
  • Awesome Multi-domain Multi-task Learning
  • Workshops
  • Online Courses
  • Related awesome list

Survey & Study

  • Factors of Influence for Transfer Learning across Diverse Appearance Domains and Task Types (TPAMI, 2022) [paper[1]]

  • Multi-Task Learning for Dense Prediction Tasks: A Survey (TPAMI, 2021) [paper[2]] [code[3]]

  • A Survey on Multi-Task Learning (TKDE, 2021) [paper[4]]

  • Multi-Task Learning with Deep Neural Networks: A Survey (arXiv, 2020) [paper[5]]

  • Taskonomy: Disentangling Task Transfer Learning (CVPR, 2018 [best paper]) [paper[6]] [dataset[7]]

  • A Comparison of Loss Weighting Strategies for Multi task Learning in Deep Neural Networks (IEEE Access, 2019) [paper[8]]

  • An Overview of Multi-Task Learning in Deep Neural Networks (arXiv, 2017) [paper[9]]

Benchmarks & Code

Benchmarks

Dense Prediction Tasks

  • [NYUv2] Indoor Segmentation and Support Inference from RGBD Images (ECCV, 2012) [paper[10]] [dataset[11]]

  • [Cityscapes] The Cityscapes Dataset for Semantic Urban Scene Understanding (CVPR, 2016) [paper[12]] [dataset[13]]

  • [PASCAL-Context] The Role of Context for Object Detection and Semantic Segmentation in the Wild (CVPR, 2014) [paper[14]] [dataset[15]]

  • [Taskonomy] Taskonomy: Disentangling Task Transfer Learning (CVPR, 2018 [best paper]) [paper[16]] [dataset[17]]

  • [KITTI] Vision meets robotics: The KITTI dataset (IJRR, 2013) [paper[18]] dataset[19]

  • [SUN RGB-D] SUN RGB-D: A RGB-D Scene Understanding Benchmark Suite (CVPR 2015) [paper[20]] [dataset[21]]

  • [BDD100K] BDD100K: A Diverse Driving Dataset for Heterogeneous Multitask Learning (CVPR, 2020) [paper[22]] [dataset[23]]

  • [Omnidata] Omnidata: A Scalable Pipeline for Making Multi-Task Mid-Level Vision Datasets from 3D Scans (ICCV, 2021) [paper[24]] [project[25]]

Image Classification

  • [Meta-dataset] Meta-Dataset: A Dataset of Datasets for Learning to Learn from Few Examples (ICLR, 2020) [paper[26]] [dataset[27]]

  • [Visual Domain Decathlon] Learning multiple visual domains with residual adapters (NeurIPS, 2017) [paper[28]] [dataset[29]]

  • [CelebA] Deep Learning Face Attributes in the Wild (ICCV, 2015) [paper[30]] [dataset[31]]

Code

  • [Multi-Task-Learning-PyTorch[32]]: Multi-task Dense Prediction.

  • [Auto-λ[33]]: Multi-task Dense Prediction, Robotics.

  • [UniversalRepresentations[34]]: Multi-task Dense Prediction[35] (including different loss weighting strategies), Multi-domain Classification[36], Cross-domain Few-shot Learning[37].

  • [MTAN[38]]: Multi-task Dense Prediction, Multi-domain Classification.

  • [ASTMT[39]]: Multi-task Dense Prediction.

  • [LibMTL[40]]: Multi-task Dense Prediction.

  • [MTPSL[41]]: Multi-task Partially-supervised Learning for Dense Prediction.

  • [Resisual Adapater[42]]: Multi-domain Classification.

Papers

2022

  • Task Discovery: Finding the Tasks that Neural Networks Generalize on (NeurIPS, 2022)

  • [Auto-λ] Auto-λ: Disentangling Dynamic Task Relationships (TMLR, 2022) [paper[43]] [code[44]]

  • [Universal Representations] Universal Representations: A Unified Look at Multiple Task and Domain Learning (arXiv, 2022) [paper[45]] [code[46]]

  • Not All Models Are Equal: Predicting Model Transferability in a Self-challenging Fisher Space (ECCV, 2022) [paper[47]] [code[48]]

  • Factorizing Knowledge in Neural Networks (ECCV, 2022) [paper[49]] [code[50]]

  • [InvPT] Inverted Pyramid Multi-task Transformer for Dense Scene Understanding (ECCV, 2022) [paper[51]] [code[52]]

  • [MultiMAE] MultiMAE: Multi-modal Multi-task Masked Autoencoders (ECCV, 2022) [paper[53]] [code[54]]

  • A Multi-objective / Multi-task Learning Framework Induced by Pareto Stationarity (ICML, 2022) [paper[55]]

  • Mitigating Modality Collapse in Multimodal VAEs via Impartial Optimization (ICML, 2022) [paper[56]]

  • Active Multi-Task Representation Learning (ICML, 2022) [paper[57]]

  • Generative Modeling for Multi-task Visual Learning (ICML, 2022) [paper[58]] [code[59]]

  • Multi-Task Learning as a Bargaining Game (ICML, 2022) [paper[60]] [code[61]]

  • Multi-Task Learning with Multi-query Transformer for Dense Prediction (arXiv, 2022) [paper[62]]

  • [Gato] A Generalist Agent (arXiv, 2022) [paper[63]]

  • [MTPSL] Learning Multiple Dense Prediction Tasks from Partially Annotated Data (CVPR, 2022) [paper[64]] [code[65]]

  • [TSA] Cross-domain Few-shot Learning with Task-specific Adapters (CVPR, 2022) [paper[66]] [code[67]]

  • [OMNIVORE] OMNIVORE: A Single Model for Many Visual Modalities (CVPR, 2022) [paper[68]] [code[69]]

  • Task Adaptive Parameter Sharing for Multi-Task Learning (CVPR, 2022) [paper[70]]

  • Controllable Dynamic Multi-Task Architectures (CVPR, 2022) [paper[71]] [code[72]]

  • [SHIFT] SHIFT: A Synthetic Driving Dataset for Continuous Multi-Task Domain Adaptation (CVPR, 2022) [paper[73]] [code[74]]

  • DiSparse: Disentangled Sparsification for Multitask Model Compression (CVPR, 2022) [paper[75]] [code[76]]

  • [MulT] MulT: An End-to-End Multitask Learning Transformer (CVPR, 2022) [paper[77]] [code[78]]

  • Sound and Visual Representation Learning with Multiple Pretraining Tasks (CVPR, 2022) [paper[79]]

  • Medusa: Universal Feature Learning via Attentional Multitasking (CVPR Workshop, 2022) [paper[80]]

  • An Evolutionary Approach to Dynamic Introduction of Tasks in Large-scale Multitask Learning Systems (arXiv, 2022) [paper[81]] [code[82]]

  • Combining Modular Skills in Multitask Learning (arXiv, 2022) [paper[83]]

  • Visual Representation Learning over Latent Domains (ICLR, 2022) [paper[84]]

  • ADARL: What, Where, and How to Adapt in Transfer Reinforcement Learning (ICLR, 2022) [paper[85]] [code[86]]

  • Towards a Unified View of Parameter-Efficient Transfer Learning (ICLR, 2022) [paper[87]] [code[88]]

  • [Rotograd] Rotograd: Dynamic Gradient Homogenization for Multi-Task Learning (ICLR, 2022) [paper[89]] [code[90]]

  • Relational Multi-task Learning: Modeling Relations Between Data and Tasks (ICLR, 2022) [paper[91]]

  • Weighted Training for Cross-task Learning (ICLR, 2022) [paper[92]] [code[93]]

  • Semi-supervised Multi-task Learning for Semantics and Depth (WACV, 2022) [paper[94]]

  • In Defense of the Unitary Scalarization for Deep Multi-Task Learning (arXiv, 2022) [paper[95]]

2021

  • Efficiently Identifying Task Groupings for Multi-Task Learning (NeurIPS, 2021) [paper[96]]

  • [CAGrad] Conflict-Averse Gradient Descent for Multi-task Learning (NeurIPS, 2021) [paper[97]] [code[98]]

  • A Closer Look at Loss Weighting in Multi-Task Learning (arXiv, 2021) [paper[99]]

  • Exploring Relational Context for Multi-Task Dense Prediction (ICCV, 2021) [paper[100]] [code[101]]

  • Multi-Task Self-Training for Learning General Representations (ICCV, 2021) [paper[102]]

  • Task Switching Network for Multi-task Learning (ICCV, 2021) [paper[103]] [code[104]]

  • Omnidata: A Scalable Pipeline for Making Multi-Task Mid-Level Vision Datasets from 3D Scans (ICCV, 2021) [paper[105]] [project[106]]

  • Robustness via Cross-Domain Ensembles (ICCV, 2021) [paper[107]] [code[108]]

  • Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation (ICCV, 2021) [paper[109]] [code[110]]

  • [URL] Universal Representation Learning from Multiple Domains for Few-shot Classification (ICCV, 2021) [paper[111]] [code[112]]

  • [tri-M] A Multi-Mode Modulator for Multi-Domain Few-Shot Classification (ICCV, 2021) [paper[113]] [code[114]]

  • MultiTask-CenterNet (MCN): Efficient and Diverse Multitask Learning using an Anchor Free Approach (ICCV Workshop, 2021) [paper[115]]

  • See Yourself in Others: Attending Multiple Tasks for Own Failure Detection (arXiv, 2021) [paper[116]]

  • A Multi-Task Cross-Task Learning Architecture for Ad-hoc Uncertainty Estimation in 3D Cardiac MRI Image Segmentation (CinC, 2021) [paper[117]] [code[118]]

  • Multi-Task Reinforcement Learning with Context-based Representations (ICML, 2021) [paper[119]]

  • [FLUTE] Learning a Universal Template for Few-shot Dataset Generalization (ICML, 2021) [paper[120]] [code[121]]

  • Towards a Unified View of Parameter-Efficient Transfer Learning (arXiv, 2021) [paper[122]]

  • UniT: Multimodal Multitask Learning with a Unified Transformer (arXiv, 2021) [paper[123]]

  • Learning to Relate Depth and Semantics for Unsupervised Domain Adaptation (CVPR, 2021) [paper[124]] [code[125]]

  • CompositeTasking: Understanding Images by Spatial Composition of Tasks (CVPR, 2021) [paper[126]] [code[127]]

  • Anomaly Detection in Video via Self-Supervised and Multi-Task Learning (CVPR, 2021) [paper[128]]

  • Taskology: Utilizing Task Relations at Scale (CVPR, 2021) [paper[129]]

  • Three Ways to Improve Semantic Segmentation with Self-Supervised Depth Estimation (CVPR, 2021) [paper[130]] [code[131]]

  • Improving Semi-Supervised and Domain-Adaptive Semantic Segmentation with Self-Supervised Depth Estimation (arXiv, 2021) [paper[132]] [code[133]]

  • Counter-Interference Adapter for Multilingual Machine Translation (Findings of EMNLP, 2021) [paper[134]]

  • Conditionally Adaptive Multi-Task Learning: Improving Transfer Learning in NLP Using Fewer Parameters & Less Data (ICLR) [paper[135]] [code[136]]

  • [Gradient Vaccine] Gradient Vaccine: Investigating and Improving Multi-task Optimization in Massively Multilingual Models (ICLR, 2021) [paper[137]]

  • [IMTL] Towards Impartial Multi-task Learning (ICLR, 2021) [paper[138]]

  • Deciphering and Optimizing Multi-Task Learning: A Random Matrix Approach (ICLR, 2021) [paper[139]]

  • [URT] A Universal Representation Transformer Layer for Few-Shot Image Classification (ICLR, 2021) [paper[140]] [code[141]]

  • Flexible Multi-task Networks by Learning Parameter Allocation (ICLR Workshop, 2021) [paper[142]]

  • Multi-Loss Weighting with Coefficient of Variations (WACV, 2021) [paper[143]] [code[144]]

2020

  • Multi-Task Reinforcement Learning with Soft Modularization (NeurIPS, 2020) [paper[145]] [code[146]]

  • AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning (NeurIPS, 2020) [paper[147]] [code[148]]

  • [GradDrop] Just Pick a Sign: Optimizing Deep Multitask Models with Gradient Sign Dropout (NeurIPS, 2020) [paper[149]] [code[150]]

  • [PCGrad] Gradient Surgery for Multi-Task Learning (NeurIPS, 2020) [paper[151]] [tensorflow[152]] [pytorch[153]]

  • On the Theory of Transfer Learning: The Importance of Task Diversity (NeurIPS, 2020) [paper[154]]

  • A Study of Residual Adapters for Multi-Domain Neural Machine Translation (WMT, 2020) [paper[155]]

  • Multi-Task Adversarial Attack (arXiv, 2020) [paper[156]]

  • Automated Search for Resource-Efficient Branched Multi-Task Networks (BMVC, 2020) [paper[157]] [code[158]]

  • Branched Multi-Task Networks: Deciding What Layers To Share (BMVC, 2020) [paper[159]]

  • MTI-Net: Multi-Scale Task Interaction Networks for Multi-Task Learning (ECCV, 2020) [paper[160]] [code[161]]

  • Reparameterizing Convolutions for Incremental Multi-Task Learning without Task Interference (ECCV, 2020) [paper[162]] [code[163]]

  • Selecting Relevant Features from a Multi-domain Representation for Few-shot Classification (ECCV, 2020) [paper[164]] [code[165]]

  • Multitask Learning Strengthens Adversarial Robustness (ECCV 2020) [paper[166]] [code[167]]

  • Duality Diagram Similarity: a generic framework for initialization selection in task transfer learning (ECCV, 2020) [paper[168]] [code[169]]

  • [KD4MTL] Knowledge Distillation for Multi-task Learning (ECCV Workshop) [paper[170]] [code[171]]

  • MTL-NAS: Task-Agnostic Neural Architecture Search towards General-Purpose Multi-Task Learning (CVPR, 2020) [paper[172]] [code[173]]

  • Robust Learning Through Cross-Task Consistency (CVPR, 2020) [paper[174]] [code[175]]

  • 12-in-1: Multi-Task Vision and Language Representation Learning (CVPR, 2020) paper[176] [code[177]]

  • A Multi-task Mean Teacher for Semi-supervised Shadow Detection (CVPR, 2020) [paper[178]] [code[179]]

  • MAD-X: An Adapter-Based Framework for Multi-Task Cross-Lingual Transfer (EMNLP, 2020) [paper[180]]

  • Masking as an Efficient Alternative to Finetuning for Pretrained Language Models (EMNLP, 2020) [paper[181]] [code[182]]

  • Effcient Continuous Pareto Exploration in Multi-Task Learning (ICML, 2020) [paper[183]] [code[184]]

  • Which Tasks Should Be Learned Together in Multi-task Learning? (ICML, 2020) [paper[185]] [code[186]]

  • Learning to Branch for Multi-Task Learning (ICML, 2020) [paper[187]]

  • Partly Supervised Multitask Learning (ICMLA, 2020) paper[188]

  • Understanding and Improving Information Transfer in Multi-Task Learning (ICLR, 2020) [paper[189]]

  • Measuring and Harnessing Transference in Multi-Task Learning (arXiv, 2020) [paper[190]]

  • Multi-Task Semi-Supervised Adversarial Autoencoding for Speech Emotion Recognition (arXiv, 2020) [paper[191]]

  • Learning Sparse Sharing Architectures for Multiple Tasks (AAAI, 2020) [paper[192]]

  • AdapterFusion: Non-Destructive Task Composition for Transfer Learning (arXiv, 2020) [paper[193]]

2019

  • Adaptive Auxiliary Task Weighting for Reinforcement Learning (NeurIPS, 2019) [paper[194]]

  • Pareto Multi-Task Learning (NeurIPS, 2019) [paper[195]] [code[196]]

  • Modular Universal Reparameterization: Deep Multi-task Learning Across Diverse Domains (NeurIPS, 2019) [paper[197]]

  • Fast and Flexible Multi-Task Classification Using Conditional Neural Adaptive Processes (NeurIPS, 2019) [paper[198]] [code[199]]

  • [Orthogonal] Regularizing Deep Multi-Task Networks using Orthogonal Gradients (arXiv, 2019) [paper[200]]

  • Many Task Learning With Task Routing (ICCV, 2019) [paper[201]] [code[202]]

  • Stochastic Filter Groups for Multi-Task CNNs: Learning Specialist and Generalist Convolution Kernels (ICCV, 2019) [paper[203]]

  • Deep Elastic Networks with Model Selection for Multi-Task Learning (ICCV, 2019) [paper[204]] [code[205]]

  • Feature Partitioning for Efficient Multi-Task Architectures (arXiv, 2019) [paper[206]] [code[207]]

  • Task Selection Policies for Multitask Learning (arXiv, 2019) [paper[208]]

  • BAM! Born-Again Multi-Task Networks for Natural Language Understanding (ACL, 2019) [paper[209]] [code[210]]

  • OmniNet: A unified architecture for multi-modal multi-task learning (arXiv, 2019) [paper[211]]

  • NDDR-CNN: Layerwise Feature Fusing in Multi-Task CNNs by Neural Discriminative Dimensionality Reduction (CVPR, 2019) [paper[212]] [code[213]]

  • [MTAN + DWA] End-to-End Multi-Task Learning with Attention (CVPR, 2019) [paper[214]] [code[215]]

  • Attentive Single-Tasking of Multiple Tasks (CVPR, 2019) [paper[216]] [code[217]]

  • Pattern-Affinitive Propagation Across Depth, Surface Normal and Semantic Segmentation (CVPR, 2019) [paper[218]]

  • Representation Similarity Analysis for Efficient Task Taxonomy & Transfer Learning (CVPR, 2019) [paper[219]] [code[220]]

  • [Geometric Loss Strategy (GLS)] MultiNet++: Multi-Stream Feature Aggregation and Geometric Loss Strategy for Multi-Task Learning (CVPR Workshop, 2019) [paper[221]]

  • Parameter-Efficient Transfer Learning for NLP (ICML, 2019) [paper[222]]

  • BERT and PALs: Projected Attention Layers for Efficient Adaptation in Multi-Task Learning (ICML, 2019) [paper[223]] [code[224]]

  • Tasks Without Borders: A New Approach to Online Multi-Task Learning (ICML Workshop, 2019) [paper[225]]

  • AutoSeM: Automatic Task Selection and Mixing in Multi-Task Learning (NACCL, 2019) [paper[226]] [code[227]]

  • Multi-Task Deep Reinforcement Learning with PopArt (AAAI, 2019) [paper[228]]

  • SNR: Sub-Network Routing for Flexible Parameter Sharing in Multi-Task Learning (AAAI, 2019) [paper[229]]

  • Latent Multi-task Architecture Learning (AAAI, 2019) [paper[230]] [[code](https://github.com/ sebastianruder/sluice-networks "[code")]

  • Multi-Task Deep Neural Networks for Natural Language Understanding (ACL, 2019) [paper[231]]

2018

  • Learning to Multitask (NeurIPS, 2018) [paper[232]]

  • [MGDA] Multi-Task Learning as Multi-Objective Optimization (NeurIPS, 2018) [paper[233]] [code[234]]

  • Adapting Auxiliary Losses Using Gradient Similarity (arXiv, 2018) [paper[235]] [code[236]]

  • Piggyback: Adapting a Single Network to Multiple Tasks by Learning to Mask Weights (ECCV, 2018) [paper[237]] [code[238]]

  • Dynamic Task Prioritization for Multitask Learning (ECCV, 2018) [paper[239]]

  • A Modulation Module for Multi-task Learning with Applications in Image Retrieval (ECCV, 2018) [paper[240]]

  • Modeling Task Relationships in Multi-task Learning with Multi-gate Mixture-of-Experts (KDD, 2018) [paper[241]]

  • Unifying and Merging Well-trained Deep Neural Networks for Inference Stage (IJCAI, 2018) [paper[242]] [code[243]]

  • Efficient Parametrization of Multi-domain Deep Neural Networks (CVPR, 2018) [paper[244]] [code[245]]

  • PAD-Net: Multi-tasks Guided Prediction-and-Distillation Network for Simultaneous Depth Estimation and Scene Parsing (CVPR, 2018) [paper[246]]

  • NestedNet: Learning Nested Sparse Structures in Deep Neural Networks (CVPR, 2018) [paper[247]]

  • PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning (CVPR, 2018) [paper[248]] [code[249]]

  • [Uncertainty] Multi-task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics (CVPR, 2018) [paper[250]]

  • Deep Asymmetric Multi-task Feature Learning (ICML, 2018) [paper[251]]

  • [GradNorm] GradNorm: Gradient Normalization for Adaptive Loss Balancing in Deep Multitask Networks (ICML, 2018) [paper[252]]

  • Pseudo-task Augmentation: From Deep Multitask Learning to Intratask Sharing---and Back (ICML, 2018) [paper[253]]

  • Gradient Adversarial Training of Neural Networks (arXiv, 2018) [paper[254]]

  • Auxiliary Tasks in Multi-task Learning (arXiv, 2018) [paper[255]]

  • Routing Networks: Adaptive Selection of Non-linear Functions for Multi-Task Learning (ICLR, 2018) [paper[256]] [code[257]

  • Beyond Shared Hierarchies: Deep Multitask Learning through Soft Layer Ordering (ICLR, 2018) [paper[258]]

2017

  • Learning multiple visual domains with residual adapters (NeurIPS, 2017) [paper[259]] [code[260]]

  • Learning Multiple Tasks with Multilinear Relationship Networks (NeurIPS, 2017) [paper[261]] [code[262]]

  • Federated Multi-Task Learning (NeurIPS, 2017) [paper[263]] [code[264]]

  • Multi-task Self-Supervised Visual Learning (ICCV, 2017) [paper[265]]

  • Adversarial Multi-task Learning for Text Classification (ACL, 2017) [paper[266]]

  • UberNet: Training a Universal Convolutional Neural Network for Low-, Mid-, and High-Level Vision Using Diverse Datasets and Limited Memory (CVPR, 2017) [paper[267]]

  • Fully-adaptive Feature Sharing in Multi-Task Networks with Applications in Person Attribute Classification (CVPR, 2017) [paper[268]]

  • Modular Multitask Reinforcement Learning with Policy Sketches (ICML, 2017) [paper[269]] [code[270]]

  • SplitNet: Learning to Semantically Split Deep Networks for Parameter Reduction and Model Parallelization (ICML, 2017) [paper[271]] [code[272]]

  • One Model To Learn Them All (arXiv, 2017) [paper[273]] [code[274]]

  • [AdaLoss] Learning Anytime Predictions in Neural Networks via Adaptive Loss Balancing (arXiv, 2017) [paper[275]]

  • Deep Multi-task Representation Learning: A Tensor Factorisation Approach (ICLR, 2017) [paper[276]] [code[277]]

  • Trace Norm Regularised Deep Multi-Task Learning (ICLR Workshop, 2017) [paper[278]] [code[279]]

  • When is multitask learning effective? Semantic sequence prediction under varying data conditions (EACL, 2017) [paper[280]] [code[281]]

  • Identifying beneficial task relations for multi-task learning in deep neural networks (EACL, 2017) [paper[282]]

  • PathNet: Evolution Channels Gradient Descent in Super Neural Networks (arXiv, 2017) [paper[283]] [code[284]]

  • Attributes for Improved Attributes: A Multi-Task Network Utilizing Implicit and Explicit Relationships for Facial Attribute Classification (AAAI, 2017) [paper[285]]

2016 and earlier

  • Learning values across many orders of magnitude (NeurIPS, 2016) [paper[286]]

  • Integrated Perception with Recurrent Multi-Task Neural Networks (NeurIPS, 2016) [paper[287]]

  • Unifying Multi-Domain Multi-Task Learning: Tensor and Neural Network Perspectives (arXiv, 2016) [paper[288]]

  • Progressive Neural Networks (arXiv, 2016) [paper[289]]

  • Deep multi-task learning with low level tasks supervised at lower layers (ACL, 2016) [paper[290]]

  • [Cross-Stitch] Cross-Stitch Networks for Multi-task Learning (CVPR,2016) [paper[291]] [code[292]]

  • Asymmetric Multi-task Learning based on Task Relatedness and Confidence (ICML, 2016) [paper[293]]

  • MultiNet: Real-time Joint Semantic Reasoning for Autonomous Driving (arXiv, 2016) [paper[294]] [code[295]]

  • A Unified Perspective on Multi-Domain and Multi-Task Learning (ICLR, 2015) [paper[296]]

  • Facial Landmark Detection by Deep Multi-task Learning (ECCV, 2014) [paper[297]] [code[298]]

  • Learning Task Grouping and Overlap in Multi-task Learning (ICML, 2012) [paper[299]]

  • Learning with Whom to Share in Multi-task Feature Learning (ICML, 2011) [paper[300]]

  • Semi-Supervised Multi-Task Learning with Task Regularizations (ICDM, 2009) [paper[301]]

  • Semi-Supervised Multitask Learning (NeurIPS, 2008) [paper[302]]

  • Multitask Learning (1997) [paper[303]]

Awesome Multi-domain Multi-task Learning[304]

Workshops

  • Workshop on Multi-Task Learning in Computer Vision (DeepMTL) at ICCV 2021[305]

  • Adaptive and Multitask Learning: Algorithms & Systems Workshop (AMTL) at ICML 2019[306]

  • Workshop on Multi-Task and Lifelong Reinforcement Learning at ICML 2015[307]

  • Transfer and Multi-Task Learning: Trends and New Perspectives at NeurIPS 2015[308]

  • Second Workshop on Transfer and Multi-task Learning at NeurIPS 2014[309]

  • New Directions in Transfer and Multi-Task: Learning Across Domains and Tasks Workshop at NeurIPS 2013[310]

Online Courses

  • CS 330: Deep Multi-Task and Meta Learning[311]

Related awesome list

  • https://github.com/SimonVandenhende/Awesome-Multi-Task-Learning

  • https://github.com/Manchery/awesome-multi-task-learning


一起交流

想和你一起学习进步!『NewBeeNLP』目前已经建立了多个不同方向交流群(机器学习 / 深度学习 / 自然语言处理 / 搜索推荐 / 图网络 / 面试交流 / 等),名额有限,赶紧添加下方微信加入一起讨论交流吧!(注意一定o要备注信息才能通过)


参考资料

[1]

[paper: https://arxiv.org/pdf/2103.13318.pdf

[2]

[paper: https://arxiv.org/abs/2004.13379

[3]

[code: https://github.com/SimonVandenhende/Multi-Task-Learning-PyTorch

[4]

[paper: https://ieeexplore.ieee.org/abstract/document/9392366

[5]

[paper: http://arxiv.org/abs/2009.09796

[6]

best paper]) [[paper: https://openaccess.thecvf.com/content_cvpr_2018/papers/Zamir_Taskonomy_Disentangling_Task_CVPR_2018_paper.pdf

[7]

[dataset: http://taskonomy.stanford.edu/

[8]

[paper: https://ieeexplore.ieee.org/document/8848395

[9]

[paper: http://arxiv.org/abs/1706.05098

[10]

NYUv2]** Indoor Segmentation and Support Inference from RGBD Images (ECCV, 2012) [[paper: https://cs.nyu.edu/~silberman/papers/indoor_seg_support.pdf

[11]

[dataset: https://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html

[12]

Cityscapes]** The Cityscapes Dataset for Semantic Urban Scene Understanding (CVPR, 2016) [[paper: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7780719

[13]

[dataset: https://www.cityscapes-dataset.com/

[14]

PASCAL-Context]** The Role of Context for Object Detection and Semantic Segmentation in the Wild (CVPR, 2014) [[paper: https://cs.stanford.edu/~roozbeh/pascal-context/mottaghi_et_al_cvpr14.pdf

[15]

[dataset: https://cs.stanford.edu/~roozbeh/pascal-context/

[16]

Taskonomy]** Taskonomy: Disentangling Task Transfer Learning (CVPR, 2018 [best paper]) [[paper: https://openaccess.thecvf.com/content_cvpr_2018/papers/Zamir_Taskonomy_Disentangling_Task_CVPR_2018_paper.pdf

[17]

[dataset: http://taskonomy.stanford.edu/

[18]

KITTI]** Vision meets robotics: The KITTI dataset (IJRR, 2013) [[paper: http://www.cvlibs.net/publications/Geiger2013IJRR.pdf

[19]

dataset: http://www.cvlibs.net/datasets/kitti/

[20]

SUN RGB-D]** SUN RGB-D: A RGB-D Scene Understanding Benchmark Suite (CVPR 2015) [[paper: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7298655

[21]

[dataset: https://rgbd.cs.princeton.edu

[22]

BDD100K]** BDD100K: A Diverse Driving Dataset for Heterogeneous Multitask Learning (CVPR, 2020) [[paper: https://openaccess.thecvf.com/content_CVPR_2020/papers/Yu_BDD100K_A_Diverse_Driving_Dataset_for_Heterogeneous_Multitask_Learning_CVPR_2020_paper.pdf

[23]

[dataset: https://bdd-data.berkeley.edu/

[24]

Omnidata]** Omnidata: A Scalable Pipeline for Making Multi-Task Mid-Level Vision Datasets from 3D Scans (ICCV, 2021) [[paper: https://arxiv.org/pdf/2110.04994.pdf

[25]

[project: https://omnidata.vision

[26]

Meta-dataset]** Meta-Dataset: A Dataset of Datasets for Learning to Learn from Few Examples (ICLR, 2020) [[paper: https://openreview.net/pdf?id=rkgAGAVKPr

[27]

[dataset: https://github.com/google-research/meta-dataset

[28]

Visual Domain Decathlon]** Learning multiple visual domains with residual adapters (NeurIPS, 2017) [[paper: https://arxiv.org/abs/1705.08045

[29]

[dataset: https://www.robots.ox.ac.uk/~vgg/decathlon/

[30]

CelebA]** Deep Learning Face Attributes in the Wild (ICCV, 2015) [[paper: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7410782

[31]

[dataset: http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

[32]

[Multi-Task-Learning-PyTorch: https://github.com/SimonVandenhende/Multi-Task-Learning-PyTorch

[33]

[Auto-λ: https://github.com/lorenmt/auto-lambda

[34]

[UniversalRepresentations: https://github.com/VICO-UoE/UniversalRepresentations

[35]

Multi-task Dense Prediction: https://github.com/VICO-UoE/UniversalRepresentations/tree/main/DensePred

[36]

Multi-domain Classification: https://github.com/VICO-UoE/UniversalRepresentations/tree/main/VisualDecathlon

[37]

Cross-domain Few-shot Learning: https://github.com/VICO-UoE/URL

[38]

[MTAN: https://github.com/lorenmt/mtan

[39]

[ASTMT: https://github.com/facebookresearch/astmt

[40]

[LibMTL: https://github.com/median-research-group/libmtl

[41]

[MTPSL: https://github.com/VICO-UoE/MTPSL

[42]

[Resisual Adapater: https://github.com/srebuffi/residual_adapters

[43]

Auto-λ]** Auto-λ: Disentangling Dynamic Task Relationships (TMLR, 2022) [[paper: https://arxiv.org/pdf/2202.03091.pdf

[44]

[code: https://github.com/lorenmt/auto-lambda

[45]

Universal Representations]** Universal Representations: A Unified Look at Multiple Task and Domain Learning (arXiv, 2022) [[paper: https://arxiv.org/pdf/2204.02744.pdf

[46]

[code: https://github.com/VICO-UoE/UniversalRepresentations

[47]

[paper: https://arxiv.org/abs/2207.03036

[48]

[code: https://github.com/TencentARC/SFDA

[49]

[paper: https://arxiv.org/abs/2207.03337

[50]

[code: https://github.com/Adamdad/KnowledgeFactor

[51]

InvPT]** Inverted Pyramid Multi-task Transformer for Dense Scene Understanding (ECCV, 2022) [[paper: https://arxiv.org/pdf/2203.07997.pdf

[52]

[code: https://github.com/prismformore/InvPT

[53]

MultiMAE]** MultiMAE: Multi-modal Multi-task Masked Autoencoders (ECCV, 2022) [[paper: https://arxiv.org/pdf/2204.01678.pdf

[54]

[code: https://multimae.epfl.ch

[55]

[paper: https://proceedings.mlr.press/v162/momma22a.html

[56]

[paper: https://proceedings.mlr.press/v162/javaloy22a.html

[57]

[paper: https://proceedings.mlr.press/v162/chen22j.html

[58]

[paper: https://proceedings.mlr.press/v162/bao22c.html

[59]

[code: https://github.com/zpbao/multi-task-oriented_generative_modeling

[60]

[paper: https://proceedings.mlr.press/v162/navon22a.html

[61]

[code: https://github.com/AvivNavon/nash-mtl

[62]

[paper: https://arxiv.org/pdf/2205.14354.pdf

[63]

Gato]** A Generalist Agent (arXiv, 2022) [[paper: https://arxiv.org/pdf/2205.06175.pdf

[64]

MTPSL]** Learning Multiple Dense Prediction Tasks from Partially Annotated Data (CVPR, 2022) [[paper: https://arxiv.org/pdf/2111.14893.pdf

[65]

[code: https://github.com/VICO-UoE/MTPSL

[66]

TSA]** Cross-domain Few-shot Learning with Task-specific Adapters (CVPR, 2022) [[paper: https://arxiv.org/pdf/2107.00358.pdf

[67]

[code: https://github.com/VICO-UoE/URL

[68]

OMNIVORE]** OMNIVORE: A Single Model for Many Visual Modalities (CVPR, 2022) [[paper: https://arxiv.org/pdf/2201.08377.pdf

[69]

[code: https://github.com/facebookresearch/omnivore

[70]

[paper: https://arxiv.org/pdf/2203.16708.pdf

[71]

[paper: https://arxiv.org/pdf/2203.14949.pdf

[72]

[code: https://www.nec-labs.com/~mas/DYMU/

[73]

SHIFT]** SHIFT: A Synthetic Driving Dataset for Continuous Multi-Task Domain Adaptation (CVPR, 2022) [[paper: https://openaccess.thecvf.com/content/CVPR2022/papers/Sun_SHIFT_A_Synthetic_Driving_Dataset_for_Continuous_Multi-Task_Domain_Adaptation_CVPR_2022_paper.pdf

[74]

[code: https://www.vis.xyz/shift/

[75]

[paper: https://openaccess.thecvf.com/content/CVPR2022/papers/Sun_DiSparse_Disentangled_Sparsification_for_Multitask_Model_Compression_CVPR_2022_paper.pdf

[76]

[code: https://github.com/SHI-Labs/DiSparse-Multitask-Model-Compression

[77]

MulT]** MulT: An End-to-End Multitask Learning Transformer (CVPR, 2022) [[paper: https://openaccess.thecvf.com/content/CVPR2022/papers/Bhattacharjee_MulT_An_End-to-End_Multitask_Learning_Transformer_CVPR_2022_paper.pdf

[78]

[code: https://github.com/IVRL/MulT

[79]

[paper: https://openaccess.thecvf.com/content/CVPR2022/papers/Vasudevan_Sound_and_Visual_Representation_Learning_With_Multiple_Pretraining_Tasks_CVPR_2022_paper.pdf

[80]

[paper: https://arxiv.org/abs/2204.05698

[81]

[paper: https://arxiv.org/pdf/2205.12755.pdf

[82]

[code: https://github.com/google-research/google-research/tree/master/muNet

[83]

[paper: https://arxiv.org/pdf/2202.13914.pdf

[84]

[paper: https://openreview.net/pdf?id=kG0AtPi6JI1

[85]

[paper: https://openreview.net/pdf?id=8H5bpVwvt5

[86]

[code: https://github.com/Adaptive-RL/AdaRL-code

[87]

[paper: https://openreview.net/pdf?id=0RDcd5Axok

[88]

[code: https://github.com/jxhe/unify-parameter-efficient-tuning

[89]

Rotograd]** Rotograd: Dynamic Gradient Homogenization for Multi-Task Learning (ICLR, 2022) [[paper: https://openreview.net/pdf?id=T8wHz4rnuGL

[90]

[code: https://github.com/adrianjav/rotograd

[91]

[paper: https://openreview.net/pdf?id=8Py-W8lSUgy

[92]

[paper: https://openreview.net/pdf?id=ltM1RMZntpu

[93]

[code: https://github.com/CogComp/TAWT

[94]

[paper: https://openaccess.thecvf.com/content/WACV2022/papers/Wang_Semi-Supervised_Multi-Task_Learning_for_Semantics_and_Depth_WACV_2022_paper.pdf

[95]

[paper: https://arxiv.org/pdf/2201.04122.pdf

[96]

[paper: http://arxiv.org/abs/2109.04617

[97]

CAGrad]** Conflict-Averse Gradient Descent for Multi-task Learning (NeurIPS, 2021) [[paper: https://openreview.net/pdf?id=61Qh8tULj

[98]

[code: https://github.com/Cranial-XIX/CAGrad

[99]

[paper: https://arxiv.org/pdf/2111.10603.pdf

[100]

[paper: http://arxiv.org/abs/2104.13874

[101]

[code: https://github.com/brdav/atrc

[102]

[paper: https://openaccess.thecvf.com/content/ICCV2021/papers/Ghiasi_Multi-Task_Self-Training_for_Learning_General_Representations_ICCV_2021_paper.pdf

[103]

[paper: https://openaccess.thecvf.com/content/ICCV2021/html/Sun_Task_Switching_Network_for_Multi-Task_Learning_ICCV_2021_paper.html

[104]

[code: https://github.com/GuoleiSun/TSNs

[105]

[paper: https://arxiv.org/pdf/2110.04994.pdf

[106]

[project: https://omnidata.vision

[107]

[paper: https://arxiv.org/abs/2103.10919

[108]

[code: https://github.com/EPFL-VILAB/XDEnsembles

[109]

[paper: https://openaccess.thecvf.com/content/ICCV2021/papers/Wang_Domain_Adaptive_Semantic_Segmentation_With_Self-Supervised_Depth_Estimation_ICCV_2021_paper.pdf

[110]

[code: https://qin.ee/corda

[111]

URL]** Universal Representation Learning from Multiple Domains for Few-shot Classification (ICCV, 2021) [[paper: https://openaccess.thecvf.com/content/ICCV2021/papers/Li_Universal_Representation_Learning_From_Multiple_Domains_for_Few-Shot_Classification_ICCV_2021_paper.pdf

[112]

[code: https://github.com/VICO-UoE/URL

[113]

tri-M]** A Multi-Mode Modulator for Multi-Domain Few-Shot Classification (ICCV, 2021) [[paper: https://openaccess.thecvf.com/content/ICCV2021/papers/Liu_A_Multi-Mode_Modulator_for_Multi-Domain_Few-Shot_Classification_ICCV_2021_paper.pdf

[114]

[code: https://github.com/csyanbin/tri-M-ICCV

[115]

[paper: https://openaccess.thecvf.com/content/ICCV2021W/ERCVAD/papers/Heuer_MultiTask-CenterNet_MCN_Efficient_and_Diverse_Multitask_Learning_Using_an_Anchor_ICCVW_2021_paper.pdf

[116]

[paper: https://arxiv.org/pdf/2110.02549.pdf

[117]

[paper: https://www.cinc.org/2021/Program/accepted/115_Preprint.pdf

[118]

[code: https://github.com/SMKamrulHasan/MTCTL

[119]

[paper: http://arxiv.org/abs/2102.06177

[120]

FLUTE]** Learning a Universal Template for Few-shot Dataset Generalization (ICML, 2021) [[paper: https://arxiv.org/pdf/2105.07029.pdf

[121]

[code: https://github.com/google-research/meta-dataset

[122]

[paper: http://arxiv.org/abs/2110.04366

[123]

[paper: http://arxiv.org/abs/2102.10772

[124]

[paper: https://openaccess.thecvf.com/content/CVPR2021/papers/Saha_Learning_To_Relate_Depth_and_Semantics_for_Unsupervised_Domain_Adaptation_CVPR_2021_paper.pdf

[125]

[code: https://github.com/susaha/ctrl-uda

[126]

[paper: https://openaccess.thecvf.com/content/CVPR2021/html/Popovic_CompositeTasking_Understanding_Images_by_Spatial_Composition_of_Tasks_CVPR_2021_paper.html

[127]

[code: https://github.com/nikola3794/composite-tasking

[128]

[paper: https://openaccess.thecvf.com/content/CVPR2021/papers/Georgescu_Anomaly_Detection_in_Video_via_Self-Supervised_and_Multi-Task_Learning_CVPR_2021_paper.pdf

[129]

[paper: https://openaccess.thecvf.com/content/CVPR2021/papers/Lu_Taskology_Utilizing_Task_Relations_at_Scale_CVPR_2021_paper.pdf

[130]

[paper: https://arxiv.org/pdf/2012.10782.pdf

[131]

[code: https://github.com/lhoyer/improving_segmentation_with_selfsupervised_depth

[132]

[paper: https://arxiv.org/pdf/2108.12545.pdf

[133]

[code: https://github.com/lhoyer/improving_segmentation_with_selfsupervised_depth

[134]

[paper: https://aclanthology.org/2021.findings-emnlp.240

[135]

[paper: https://openreview.net/forum?id=de11dbHzAMF

[136]

[code: https://github.com/CAMTL/CA-MTL

[137]

Gradient Vaccine]** Gradient Vaccine: Investigating and Improving Multi-task Optimization in Massively Multilingual Models (ICLR, 2021) [[paper: https://openreview.net/forum?id=F1vEjWK-lH_

[138]

IMTL]** Towards Impartial Multi-task Learning (ICLR, 2021) [[paper: https://openreview.net/forum?id=IMPnRXEWpvr

[139]

[paper: https://openreview.net/forum?id=Cri3xz59ga

[140]

URT]** A Universal Representation Transformer Layer for Few-Shot Image Classification (ICLR, 2021) [[paper: https://arxiv.org/pdf/2006.11702.pdf

[141]

[code: https://github.com/liulu112601/URT

[142]

[paper: http://arxiv.org/abs/1910.04915

[143]

[paper: https://openaccess.thecvf.com/content/WACV2021/papers/Groenendijk_Multi-Loss_Weighting_With_Coefficient_of_Variations_WACV_2021_paper.pdf

[144]

[code: https://github.com/rickgroen/cov-weighting

[145]

[paper: http://arxiv.org/abs/2003.13661

[146]

[code: https://github.com/RchalYang/Soft-Module

[147]

[paper: http://arxiv.org/abs/1911.12423

[148]

[code: https://github.com/sunxm2357/AdaShare

[149]

GradDrop]** Just Pick a Sign: Optimizing Deep Multitask Models with Gradient Sign Dropout (NeurIPS, 2020) [[paper: https://proceedings.NeurIPS.cc//paper/2020/file/16002f7a455a94aa4e91cc34ebdb9f2d-Paper.pdf

[150]

[code: https://github.com/tensorflow/lingvo/blob/master/lingvo/core/graddrop.py

[151]

PCGrad]** Gradient Surgery for Multi-Task Learning (NeurIPS, 2020) [[paper: http://arxiv.org/abs/2001.06782

[152]

[tensorflow: https://github.com/tianheyu927/PCGrad

[153]

[pytorch: https://github.com/WeiChengTseng/Pytorch-PCGrad

[154]

[paper: https://proceedings.NeurIPS.cc//paper/2020/file/59587bffec1c7846f3e34230141556ae-Paper.pdf

[155]

[paper: https://www.aclweb.org/anthology/2020.wmt-1.72/

[156]

[paper: http://arxiv.org/abs/2011.09824

[157]

[paper: http://arxiv.org/abs/2008.10292

[158]

[code: https://github.com/brdav/bmtas

[159]

[paper: http://arxiv.org/abs/1904.02920

[160]

[paper: http://arxiv.org/abs/2001.06902

[161]

[code: https://github.com/SimonVandenhende/Multi-Task-Learning-PyTorch

[162]

[paper: http://arxiv.org/abs/2007.12540

[163]

[code: https://github.com/menelaoskanakis/RCM

[164]

[paper: https://arxiv.org/pdf/2003.09338.pdf

[165]

[code: https://github.com/dvornikita/SUR

[166]

[paper: https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123470154.pdf

[167]

[code: https://github.com/columbia/MTRobust

[168]

[paper: https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123710494.pdf

[169]

[code: https://github.com/cvai-repo/duality-diagram-similarity

[170]

KD4MTL]** Knowledge Distillation for Multi-task Learning (ECCV Workshop) [[paper: https://arxiv.org/pdf/2007.06889.pdf

[171]

[code: https://github.com/VICO-UoE/KD4MTL

[172]

[paper: https://arxiv.org/abs/2003.14058

[173]

[code: https://github.com/bhpfelix/MTLNAS

[174]

[paper: https://consistency.epfl.ch/Cross_Task_Consistency_CVPR2020.pdf

[175]

[code: https://github.com/EPFL-VILAB/XTConsistency

[176]

paper: https://openaccess.thecvf.com/content_CVPR_2020/papers/Lu_12-in-1_Multi-Task_Vision_and_Language_Representation_Learning_CVPR_2020_paper.pdf

[177]

[code: https://github.com/facebookresearch/vilbert-multi-task

[178]

[paper: https://openaccess.thecvf.com/content_CVPR_2020/papers/Chen_A_Multi-Task_Mean_Teacher_for_Semi-Supervised_Shadow_Detection_CVPR_2020_paper.pdf

[179]

[code: https://github.com/eraserNut/MTMT

[180]

[paper: https://doi.org/10.18653/v1/2020.emnlp-main.617

[181]

[paper: http://arxiv.org/abs/2004.12406

[182]

[code: https://github.com/ptlmasking/maskbert

[183]

[paper: http://proceedings.mlr.press/v119/ma20a/ma20a.pdf

[184]

[code: https://github.com/mit-gfx/ContinuousParetoMTL

[185]

[paper: http://arxiv.org/abs/1905.07553

[186]

[code: https://github.com/tstandley/taskgrouping

[187]

[paper: https://arxiv.org/abs/2006.01895

[188]

paper: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9356271

[189]

[paper: https://arxiv.org/abs/2005.00944

[190]

[paper: https://arxiv.org/abs/2010.15413

[191]

[paper: https://arxiv.org/pdf/1907.06078.pdf

[192]

[paper: http://arxiv.org/abs/1911.05034

[193]

[paper: http://arxiv.org/abs/2005.00247

[194]

[paper: https://papers.nips.cc/paper/2019/hash/0e900ad84f63618452210ab8baae0218-Abstract.html

[195]

[paper: http://papers.nips.cc/paper/9374-pareto-multi-task-learning.pdf

[196]

[code: https://github.com/Xi-L/ParetoMTL

[197]

[paper: http://arxiv.org/abs/1906.00097

[198]

[paper: https://github.com/cambridge-mlg/cnaps

[199]

[code: https://proceedings.neurips.cc/paper/2019/file/1138d90ef0a0848a542e57d1595f58ea-Paper.pdf

[200]

Orthogonal]** Regularizing Deep Multi-Task Networks using Orthogonal Gradients (arXiv, 2019) [[paper: http://arxiv.org/abs/1912.06844

[201]

[paper: https://openaccess.thecvf.com/content_ICCV_2019/papers/Strezoski_Many_Task_Learning_With_Task_Routing_ICCV_2019_paper.pdf

[202]

[code: https://github.com/gstrezoski/TaskRouting

[203]

[paper: https://arxiv.org/abs/1908.09597

[204]

[paper: http://arxiv.org/abs/1909.04860

[205]

[code: https://github.com/rllab-snu/Deep-Elastic-Network

[206]

[paper: https://arxiv.org/abs/1908.04339

[207]

[code: https://github.com/google/multi-task-architecture-search

[208]

[paper: http://arxiv.org/abs/1907.06214

[209]

[paper: https://www.aclweb.org/anthology/P19-1595/

[210]

[code: https://github.com/google-research/google-research/tree/master/bam

[211]

[paper: http://arxiv.org/abs/1907.07804

[212]

[paper: https://arxiv.org/abs/1801.08297

[213]

[code: https://github.com/ethanygao/NDDR-CNN

[214]

MTAN + DWA]** End-to-End Multi-Task Learning with Attention (CVPR, 2019) [[paper: http://arxiv.org/abs/1803.10704

[215]

[code: https://github.com/lorenmt/mtan

[216]

[paper: http://arxiv.org/abs/1904.08918

[217]

[code: https://github.com/facebookresearch/astmt

[218]

[paper: https://openaccess.thecvf.com/content_CVPR_2019/papers/Zhang_Pattern-Affinitive_Propagation_Across_Depth_Surface_Normal_and_Semantic_Segmentation_CVPR_2019_paper.pdf

[219]

[paper: https://arxiv.org/abs/1904.11740

[220]

[code: https://github.com/kshitijd20/RSA-CVPR19-release

[221]

Geometric Loss Strategy (GLS)]** MultiNet++: Multi-Stream Feature Aggregation and Geometric Loss Strategy for Multi-Task Learning (CVPR Workshop, 2019) [[paper: http://arxiv.org/abs/1904.08492

[222]

[paper: http://arxiv.org/abs/1902.00751

[223]

[paper: http://arxiv.org/abs/1902.02671

[224]

[code: https://github.com/AsaCooperStickland/Bert-n-Pals

[225]

[paper: https://openreview.net/pdf?id=HkllV5Bs24

[226]

[paper: https://arxiv.org/abs/1904.04153

[227]

[code: https://github.com/HanGuo97/AutoSeM

[228]

[paper: https://doi.org/10.1609/aaai.v33i01.33013796

[229]

[paper: https://ojs.aaai.org/index.php/AAAI/article/view/3788/3666

[230]

[paper: https://arxiv.org/abs/1705.08142

[231]

[paper: https://arxiv.org/pdf/1901.11504.pdf

[232]

[paper: https://papers.nips.cc/paper/2018/file/aeefb050911334869a7a5d9e4d0e1689-Paper.pdf

[233]

MGDA]** Multi-Task Learning as Multi-Objective Optimization (NeurIPS, 2018) [[paper: http://arxiv.org/abs/1810.04650

[234]

[code: https://github.com/isl-org/MultiObjectiveOptimization

[235]

[paper: http://arxiv.org/abs/1812.02224

[236]

[code: https://github.com/szkocot/Adapting-Auxiliary-Losses-Using-Gradient-Similarity

[237]

[paper: https://openaccess.thecvf.com/content_ECCV_2018/papers/Arun_Mallya_Piggyback_Adapting_a_ECCV_2018_paper.pdf

[238]

[code: https://github.com/arunmallya/piggyback

[239]

[paper: https://openaccess.thecvf.com/content_ECCV_2018/papers/Michelle_Guo_Focus_on_the_ECCV_2018_paper.pdf

[240]

[paper: https://arxiv.org/abs/1807.06708

[241]

[paper: https://dl.acm.org/doi/pdf/10.1145/3219819.3220007

[242]

[paper: http://arxiv.org/abs/1805.04980

[243]

[code: https://github.com/ivclab/NeuralMerger

[244]

[paper: https://openaccess.thecvf.com/content_cvpr_2018/papers/Rebuffi_Efficient_Parametrization_of_CVPR_2018_paper.pdf

[245]

[code: https://github.com/srebuffi/residual_adapters

[246]

[paper: https://openaccess.thecvf.com/content_cvpr_2018/papers/Xu_PAD-Net_Multi-Tasks_Guided_CVPR_2018_paper.pdf

[247]

[paper: https://openaccess.thecvf.com/content_cvpr_2018/papers/Kim_NestedNet_Learning_Nested_CVPR_2018_paper.pdf

[248]

[paper: https://openaccess.thecvf.com/content_cvpr_2018/papers/Mallya_PackNet_Adding_Multiple_CVPR_2018_paper.pdf

[249]

[code: https://github.com/arunmallya/packnet

[250]

Uncertainty]** Multi-task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics (CVPR, 2018) [[paper: https://openaccess.thecvf.com/content_cvpr_2018/papers/Kendall_Multi-Task_Learning_Using_CVPR_2018_paper.pdf

[251]

[paper: http://proceedings.mlr.press/v80/lee18d/lee18d.pdf

[252]

GradNorm]** GradNorm: Gradient Normalization for Adaptive Loss Balancing in Deep Multitask Networks (ICML, 2018) [[paper: http://arxiv.org/abs/1711.02257

[253]

[paper: http://arxiv.org/abs/1803.04062

[254]

[paper: http://arxiv.org/abs/1806.08028

[255]

[paper: http://arxiv.org/abs/1805.06334

[256]

[paper: http://arxiv.org/abs/1711.01239

[257]

[code: https://github.com/cle-ros/RoutingNetworks

[258]

[paper: http://arxiv.org/abs/1711.00108

[259]

[paper: https://papers.nips.cc/paper/2017/file/e7b24b112a44fdd9ee93bdf998c6ca0e-Paper.pdf

[260]

[code: https://github.com/srebuffi/residual_adapters

[261]

[paper: https://proceedings.NeurIPS.cc/paper/2017/file/03e0704b5690a2dee1861dc3ad3316c9-Paper.pdf

[262]

[code: https://github.com/thuml/MTlearn

[263]

[paper: https://proceedings.NeurIPS.cc/paper/2017/file/6211080fa89981f66b1a0c9d55c61d0f-Paper.pdf

[264]

[code: https://github.com/gingsmith/fmtl

[265]

[paper: http://arxiv.org/abs/1708.07860

[266]

[paper: http://arxiv.org/abs/1704.05742

[267]

[paper: https://arxiv.org/abs/1609.02132

[268]

[paper: https://openaccess.thecvf.com/content_cvpr_2017/papers/Lu_Fully-Adaptive_Feature_Sharing_CVPR_2017_paper.pdf

[269]

[paper: http://arxiv.org/abs/1611.01796

[270]

[code: https://github.com/jacobandreas/psketch

[271]

[paper: http://proceedings.mlr.press/v70/kim17b.html

[272]

[code: https://github.com/dalgu90/splitnet-wrn

[273]

[paper: http://arxiv.org/abs/1706.05137

[274]

[code: https://github.com/tensorflow/tensor2tensor

[275]

AdaLoss]** Learning Anytime Predictions in Neural Networks via Adaptive Loss Balancing (arXiv, 2017) [[paper: http://arxiv.org/abs/1708.06832

[276]

[paper: https://arxiv.org/abs/1605.06391

[277]

[code: https://github.com/wOOL/DMTRL

[278]

[paper: http://arxiv.org/abs/1606.04038

[279]

[code: https://github.com/wOOL/TNRDMTL

[280]

[paper: http://arxiv.org/abs/1612.02251

[281]

[code: https://github.com/bplank/multitasksemantics

[282]

[paper: http://arxiv.org/abs/1702.08303

[283]

[paper: http://arxiv.org/abs/1701.08734

[284]

[code: https://github.com/jsikyoon/pathnet

[285]

[paper: https://www.aaai.org/ocs/index.php/AAAI/AAAI17/paper/viewFile/14749/14282

[286]

[paper: https://arxiv.org/abs/1602.07714

[287]

[paper: https://proceedings.neurips.cc/paper/2016/file/06409663226af2f3114485aa4e0a23b4-Paper.pdf

[288]

[paper: http://arxiv.org/abs/1611.09345

[289]

[paper: https://arxiv.org/abs/1606.04671

[290]

[paper: https://www.aclweb.org/anthology/P16-2038.pdf

[291]

Cross-Stitch]** Cross-Stitch Networks for Multi-task Learning (CVPR,2016) [[paper: https://arxiv.org/abs/1604.03539

[292]

[code: https://github.com/helloyide/Cross-stitch-Networks-for-Multi-task-Learning

[293]

[paper: http://proceedings.mlr.press/v48/leeb16.pdf

[294]

[paper: http://arxiv.org/abs/1612.07695

[295]

[code: https://github.com/MarvinTeichmann/MultiNet

[296]

[paper: http://arxiv.org/abs/1412.7489

[297]

[paper: https://personal.ie.cuhk.edu.hk/~ccloy/files/eccv_2014_deepfacealign.pdf

[298]

[code: http://mmlab.ie.cuhk.edu.hk/projects/TCDCN.html

[299]

[paper: http://arxiv.org/abs/1206.6417

[300]

[paper: http://www.cs.utexas.edu/~grauman/papers/icml2011.pdf

[301]

[paper: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5360282

[302]

[paper: https://proceedings.neurips.cc/paper/2007/file/a34bacf839b923770b2c360eefa26748-Paper.pdf

[303]

[paper: https://link.springer.com/content/pdf/10.1023/A:1007379606734.pdf

[304]

Awesome Multi-domain Multi-task Learning: https://github.com/WeiHongLee/Awesome-Multi-Domain-Multi-Task-Learning

[305]

Workshop on Multi-Task Learning in Computer Vision (DeepMTL) at ICCV 2021: https://sites.google.com/view/deepmtlworkshop/home

[306]

Adaptive and Multitask Learning: Algorithms & Systems Workshop (AMTL) at ICML 2019: https://www.amtl-workshop.org

[307]

Workshop on Multi-Task and Lifelong Reinforcement Learning at ICML 2015: https://sites.google.com/view/mtlrl

[308]

Transfer and Multi-Task Learning: Trends and New Perspectives at NeurIPS 2015: https://nips.cc/Conferences/2015/Schedule?showEvent=4939

[309]

Second Workshop on Transfer and Multi-task Learning at NeurIPS 2014: https://sites.google.com/site/multitaskwsnips2014/

[310]

New Directions in Transfer and Multi-Task: Learning Across Domains and Tasks Workshop at NeurIPS 2013: https://sites.google.com/site/learningacross/home

[311]

CS 330: Deep Multi-Task and Meta Learning: https://cs330.stanford.edu




📝论文解读投稿,让你的文章被更多不同背景、不同方向的人看到,不被石沉大海,或许还能增加不少引用的呦~ 投稿加下面微信备注“投稿”即可。

最近文章

COLING'22 | SelfMix:针对带噪数据集的半监督学习方法

ACMMM 2022 | 首个针对跨语言跨模态检索的噪声鲁棒研究工作




投稿或交流学习,备注:昵称-学校(公司)-方向,进入DL&NLP交流群。
方向有很多:机器学习、深度学习,python,情感分析、意见挖掘、句法分析、机器翻译、人机对话、知识图谱、语音识别等
记得备注~

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
今日实习|AECOM开放咨询类Full Time!低至19刀的手卷omakase!杀疯了!解除Hiring Freeze!Zoom开启秋招NG、Intern岗位!纽约Bayside新开精致日料!日本空运鱼生超鲜!竟还藏着高性价比Omakase!China’s Space Station to Welcome Largest Crew On BoardPromptCLUE:大规模多任务Prompt预训练中文开源模型不能永远 Too young Too simple Sometimes naive学生收藏好!多伦多6家宝藏咖啡店!价格亲民+超适合学习!生命的哀歌纽约最高性价比日料omakase居然藏在Bayside!$88足足15道 含鹅肝海胆!宇宙人(1121期)我国成功发射5米S-SAR01星;中国科学家团队首次“拍到”;NASA双小行星重定向测试任务超出任务预期2022庭院:菜篮子(08/10-08/18)NeurIPS 2022 | AutoMTL:第一个自动化多任务学习编程框架!Young Chinese Are Overdosing on Cough Meds to Combat Stress由Sagnac效应看相对论卫道士们的混乱逻辑China Allows Home Isolation for Mild COVID CasesIn Southwest China, Truffles Smell a Lot Like Money时隔42年,林散之书法作品再次展出CLUE社区最新神器!PromptCLUE:大规模多任务Prompt预训练中文开源模型Zhengzhou Becomes First Big City to Scrap ‘Hukou’ Restrictions洛杉矶迪士尼The Westin Anaheim Resort体验Prompt总结 | 从MLM预训任务到Prompt Learning原理解析与Zero-shot分类、NER简单实践明尼觅食记|明尼最好吃的德州烧烤卡车 - Boomin Barbecue!Women’s Rights Law Suggests Gender Reporting Rules for Media近2000家北上广秋招名企!附留学生落户办理宝藏资料!At Least 19 Chinese Women Accuse Ex-Tutor of Sexual HarassmentChina’s Lofty Goals for Women’s Soccer Team Misses Pay DetailsHiring | Business Development Specialist (Full-time/ Part-time)实习资讯|AECOM开放咨询类Full Time!不求人村上春树确定任教于希拉里母校Wellesley College!At Home and at Work, China’s Weaning Moms Face a Bottleneck不要写suggest somebody to do something无忧买房|Wellesley单家庭房出售,高评分学区,步行可至Wellesley高中,近镇中心和通勤铁路火车站Citing COVID, China Discourages Domestic Holiday Travel, Again
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。