Redian新闻
>
ICLR盲审阶段被审稿人赞不绝口的论文:会是Transformer架构的一大创新吗?

ICLR盲审阶段被审稿人赞不绝口的论文:会是Transformer架构的一大创新吗?

公众号新闻

点击下方卡片,关注“CVer”公众号

AI/CV重磅干货,第一时间送达

点击进入—>Transformer技术交流群

转载自:机器之心 | 编辑:杜伟、陈萍

首次!无残差连接或归一化层,也能成功训练深度transformer。


尽管取得了很多显著的成就,但训练深度神经网络(DNN)的实践进展在很大程度上独立于理论依据。大多数成功的现代 DNN 依赖残差连接和归一化层的特定排列,但如何在新架构中使用这些组件的一般原则仍然未知,并且它们在现有架构中的作用也依然未能完全搞清楚。


残差架构是最流行和成功的,最初是在卷积神经网络(CNN)的背景下开发的,后来自注意力网络中产生了无处不在的 transformer 架构。残差架构之所以取得成功,一种原因是与普通 DNN 相比具有更好的信号传播能力,其中信号传播指的是几何信息通过 DNN 层的传输,并由内核函数表示。


最近,使用信号传播原则来训练更深度的 DNN 并且残差架构中没有残差连接和 / 或归一化层的参与,成为了社区感兴趣的领域。原因有两个:首先验证了残差架构有效性的信号传播假设,从而阐明对 DNN 可解释性的理解;其次这可能会实现超越残差范式的 DNN 可训练性的一般原则和方法。


对于 CNN,Xiao et al. (2018)的工作表明,通过更好初始化提升的信号传播能够高效地训练普通深度网络,尽管与残差网络比速度显著降低。Martens et al. (2021) 的工作提出了 Deep Kernel Shaping (DKS),使用激活函数转换来控制信号传播,使用 K-FAC 等强二阶优化器在 ImageNet 上实现了普通网络和残差网络的训练速度相等。Zhang et al. (2022) 的工作将 DKS 扩展到了更大类的激活函数,在泛化方面也实现了接近相等。


信号传播中需要分析的关键量是 DNN 的初始化时间内核,或者更准确地说,是无限宽度限制下的近似内核。对于多层感知机(MLP)以及使用 Delta 初始化的 CNN,该内核可以编写为仅包含 2D 函数的简单层递归,以便于进行直接分析。跨层 transformer 的内核演化更加复杂,因此 DKS 等现有方法不适用 transformer 或实际上任何包含自注意力层的架构。


在 MLP 中,信号传播是通过查看(一维)内核的行为来判断的,而 transformer 中的信号传播可以通过查看(高维)内核矩阵在网络层中的演化来判断。


该研究必须避免一种情况:对角线元素随深度增加快速增长或收缩,这与不受控制的激活范数有关,可能导致饱和损失或数值问题。避免秩崩溃(rank collapse)对于深度 transformer 的可训练性是必要的,而是否可以训练深度无残差 transformer 仍是一个悬而未决的问题。


ICLR 2023 盲审阶段的这篇论文解决了这个问题,首次证明了无需残差连接或归一化层时也可能成功训练深度 transformer。为此,他们研究了深度无残差 transformer 中的信号传播和秩崩溃问题,并推导出三种方法来阻止它们。具体而言,方法中使用了以下组合:参数初始化、偏置矩阵和位置相关的重缩放,并强调了 transformer 中信号传播特有的几种复杂性,包括与位置编码和因果掩蔽的交互。研究者实证证明了他们的方法可以生成可训练的深度无残差 transformer。


在实验部分,在 WikiText-103 和 C4 数据集上,研究者展示了使用他们主要的方法——指数信号保持注意力(Exponential Signal Preserving Attention, E-SPA),可以通过延长大约五倍的训练时间使得标准 transformer 与文中无残差 transformer 的训练损失相当。此外通过将这一方法与残差连接结合,研究者还表明无归一化层的 transformer 能够实现与标准 transformer 相当的训练速度。



论文地址:https://openreview.net/pdf?id=NPrsUQgMjKK


对于这篇论文,Google AI 首席工程师 Rohan Anil 认为是 Transformer 架构向前迈出的一大步,还是一个基础性的改进。



构造无捷径可训练的深层 Transformer


迄今为止,纠正 Transformer 秩崩溃(rank collapse)的唯一策略依赖于残差连接,该方式跳过了自注意力层固有的可训练性问题。与此相反,该研究直接解决这个问题。首先通过注意力层更好地理解信号传播,然后根据见解(insights)进行修改,以在深度 transformer 中实现对忠实信号的传输,无论是否使用残差连接,都可以对信号进行训练。


具体而言,首先,该研究对仅存在注意力的深度 vanilla transformer 进行了一下简单设置,之后他们假设该 transformer 具有单一头(h = 1)设置或具有多头设置,其中注意力矩阵 A 在不同头之间不会变化。如果块 l≤L 初始化时有注意力矩阵 A_l,则最终块的表示形式为 X_L:



对于上式而言,如果采用正交初始化,那么就可以在初始化时正交。


在上述假设下,如果采用表示跨位置输入核矩阵,经过一些简化处理后,可以得到如下公式:



从这个简化公式(深度仅注意力 transformer 中的核矩阵)中,可以确定对 (A_l)_l 的三个要求: 


  1. 必须在每个块中表现良好,避免退化情况,如秩崩溃和爆炸 / 消失的对角线值;

  2. A_l 必须是元素非负 ∀l;

  3. A_l 应该是下三角∀l,以便与因果掩码注意力兼容。


在接下来的 3.1 和 3.2 节中,该研究专注于寻找满足上述需求的注意力矩阵,他们提出了 3 种方法 E-SPA、U-SPA 和 Value-Skipinit,每种方法都用来控制 transformer 的注意力矩阵,即使在很深的深度也能实现忠实的信号传播。此外,3.3 节演示了如何修改 softmax 注意力以实现这些注意力矩阵。


下图中,该研究对提出的两个 SPA 方案进行了验证,U-SPA 和 E-SPA,结果显示即使在网络较深时也能成功地避免仅注意力 vanilla transformers 中的秩崩溃现象。



实验


WikiText-103 基线:首先,该研究验证了没有残差连接的标准深度 transformer 是不可训练的,即使它们有归一化层 (LN) 和 transformed 激活,但本文的方法可以解决这个问题。如图 2 所示,可以清楚地看到,从标准 transformer 中移除残差连接使其不可训练,训练损失稳定在 7.5 左右。正如图 1 所示,标准 transformer 遭受了秩崩溃。



另一方面,该研究提出的 E-SPA 方法优于 U-SPA 和 Value-Skipinit。然而,与本文无残差方法相比,带有残差和 LN 的默认 transformer 仍然保持训练速度优势。


在表 1 中,该研究使用提出的方法评估了 MLP 块中不同激活函数的影响,以及 LN 在无残差 transformer 的使用。可以看到在深度为 36 处,本文方法针对一系列激活实现了良好的训练性能:DKS-transformed GeLU、TAT-transformed Leaky ReLU 以及 untransformed GeLU ,但不是 untransformed Sigmoid。通过实验还看到,层归一化对于训练速度而言相对不重要,甚至在使用 SPA 时对 transformed activation 的激活有害,因为 SPA 已经具有控制激活规范的内置机制。



在图 3 中,我们看到一种不需要更多迭代就能匹配默认 transformer 训练损失的方法是使用归一化残差连接。



表 2 显示带有归一化残差和 LN 的 E-SPA 优于默认的 PreLN transformer。



下图 4(a)表明 E-SPA 再次优于其他方法;4(b)表明训练损失差距可以通过简单地增加训练时间来消除。



点击进入—>Transformer微信技术交流群


CVPR/ECCV 2022论文和代码下载


后台回复:CVPR2022,即可下载CVPR 2022论文和代码开源的论文合集

后台回复:ECCV2022,即可下载ECCV 2022论文和代码开源的论文合集

后台回复:Transformer综述,即可下载最新的3篇Transformer综述PDF


目标检测和Transformer交流群成立


扫描下方二维码,或者添加微信:CVer222,即可添加CVer小助手微信,便可申请加入CVer-目标检测或者Transformer 微信交流群。另外其他垂直方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch、TensorFlow和Transformer等。


一定要备注:研究方向+地点+学校/公司+昵称(如目标检测或者Transformer+上海+上交+卡卡),根据格式备注,可更快被通过且邀请进群


▲扫码或加微信号: CVer222,进交流群


CVer学术交流群(知识星球)来了!想要了解最新最快最好的CV/DL/ML论文速递、优质开源项目、学习教程和实战训练等资料,欢迎扫描下方二维码,加入CVer学术交流群,已汇集数千人!


扫码进群

▲点击上方卡片,关注CVer公众号

整理不易,请点赞和在看

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
ICLR盲审阶段就被评审赞不绝口的论文:会是Transformer架构的一大创新吗?Moon River《山居续忆》:第十二章:我也有一位恩师 (一)BBC权威英语俗语100句,连老外都赞不绝口!Transformer如何做扩散模型?伯克利最新《transformer可扩展扩散模型》论文Aldi仅售$20的小东西火了!澳女用后赞不绝口,网友直呼要买ConvNeXt V2来了,仅用最简单的卷积架构,性能不输Transformer超越ConvNeXt!Transformer 风格的卷积网络视觉基线模型Conv2FormerICRA 2023 | CurveFormer:基于Transformer的3D车道线检测新网络百元出头入非遗大师手作茶,似花似果又似蜜,英女王赞不绝口7 Papers & Radios | ECCV 2022最佳论文;Transformer在试错中自主改进火爆的Transformer,可能是目前最好发论文的神器!(文末附顶会合集)7 Papers & Radios | 谷歌开源机器人领域transformer;DeepMind推出剧本写作AI超越ConvNeXt!Conv2Former:用于视觉识别的Transformer风格的ConvNet火爆的Transformer,可能是目前最好发论文的神器!一个基于Transformer的深度学习架构,在基因调控中组蛋白代码的定量破译方面性能超群7 Papers & Radios | 无残差连接训练深度transformer;DeepMind写代码AI登Science封面这款广东人超爱的蔬菜,美国人也赞不绝口,但90%的华人竟不认识?Transformer检测神器!detrex:面向DETR系列的目标检测开源框架Meta发布ConvNeXt V2!仅用最简单的卷积架构,性能不输Transformer更快更强!EfficientFormerV2来了!一种新的轻量级视觉TransformerCF-ViT:用于视觉Transformer的由粗到细的两阶段动态推理架构 | AAAI 2023Target仅售$30的玻璃杯火了!网友看了都赞不绝口,外国人都想买参数减半、与CLIP一样好,视觉Transformer从像素入手实现图像文本统一两个第一次:做甜面包和葱油鸡家人开始不理解,使用后赞不绝口的6款设计,小户型适用!【装修干货】《最后的诗歌》:8: 战争结束后战士回家低至39刀!黄西+池子脱口秀北美巡演官宣预售!拜登都对他赞不绝口又爆作弊丑闻?AAAI 2023审稿人被作者找上门,才发现rebuttal阶段审稿人互相可见Kmart仅售$15的水杯火了!冰块放进去3天都不化,买过的都赞不绝口(组图)平价买到高级感!IKEA全新 OBEGRÄNSAD系列,全系列都好看!IKEA x OBEGRÄNSAD联名!宜家22年最受瞩目系列开售!咀外文嚼汉字(180)“喉佛”VS.“喉结”
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。