Redian新闻
>
极大提高效率:深度学习论文写作工具杂谈

极大提高效率:深度学习论文写作工具杂谈

公众号新闻


MLNLP社区是国内外知名的机器学习与自然语言处理社区,受众覆盖国内外NLP硕博生、高校老师以及企业研究人员。
社区的愿景是促进国内外自然语言处理,机器学习学术界、产业界和广大爱好者之间的交流和进步,特别是初学者同学们的进步。
转载自 | 极市平台
作者|黄海广
来源|机器学习初学者

本文介绍以下几种工具:

  • 论文管理神器Zotero

  • OCR神器(公式识别等)

  • Latex工具

  • 语法校对工具

  • 论文翻译

  • 论文绘图工具


1

『论文管理神器Zotero』

一、Zotero简介

Zotero作为一款协助科研工作者收集、管理以及引用研究资源的免费软件,如今已被广泛使用。此篇使用说明主要分享引用研究资源功能,其中研究资源可以包括期刊、书籍等各类文献和网页、图片等。欢迎所有共同学习使用的朋友提供批评意见或补充使用经验。

下载地址:https://www.zotero.org/download/

ubuntu下安装zotero:

sudo apt-add-repository ppa:smathot/cogscinl # Say yes/press enter to accept any requests.$ sudo apt-get update# Wait for it to complete, then:$ sudo apt-get install zotero-standalone
二、新建分类
步骤:我的文库→右键→新建分类→输入名称→鼠标右键我的文库→出现新建文件夹

三、英文文献信息导入

步骤(非常简单):
在新建目录下→鼠标拖入英文文献→右键重新抓取PDF文件的元数据→获取文献基本信息
备注:一些时间久远的英文论文也不能直接抓取数据,具体信息抓取方法参照第四部分中文文献的信息导入。

四、中文文献信息导入

步骤(稍复杂):
1. 在Text目录下→鼠标拖入中文文献
2. 在百度学术搜索文献→点击批量引用→导出到BibTex→下载
3. 用记事本打开下载好的.bib文件→复制全部内容
4. Zotero界面文件一栏→选择从剪贴板导入
5. 将PDF文件鼠标拖至刚导入文件成为其子文件→完成中文文献的信息抓取

五、插入文献

步骤:
1. Word中点击菜单栏中的“Zotero”工具栏→选择要引用的方式(默认选项没有的引用方式参见第六部分)
2. 鼠标光标置于要插入上角标处(即下图2处)→点击下图1处所示图标→2处出现红框内文字,3处出现Zotero快速格式化引文→点击快速格式化引文左边图标选择经典视图
3. 出现“添加/编辑引文”对话框→选择要引入的文献,点击OK
4. 下图1处出现上角标→光标置于参考文献3处→点击2处→3处引入参考文献成功
5. 其他文献可依次插入。Zotero有个特别强大的功能,如果中间一部分引文被删除,点击工具栏的Refresh,上角标以及参考文献会自动更新。

六、寻找非默认引文格式

步骤:
点击左上角Add/Edit
Citation工具→选择右下角管理样式→在 Zotero Style Repository对话框寻找想要的引文格式


七、使用坚果云同步文献

zotero只给了300m的空间,大概只能放80来篇文献的全文文件,如果文献较多就不能同步全文。注意:使用同步功能要先注册zotero账号。解决方法:使用坚果云:
坚果云官网:https://www.jianguoyun.com/
注意关闭手机验证,设置如图:

八、使用插件

Zotero还有不少插件,比较有名的是zotfile,Zotero DOl Manager,它们可以自动下载pdf,或者获取论文的DOI。
具体使用方法可以网上搜索获取。

2

『OCR神器(公式识别等)』

我发现了一个神奇的OCR工具:天若OCR,功能真的很好很强大。
免费版本可以识别图片文本,收费版本也不贵,59元一次性买个专业版,可以定义接口。
软件具有文本识别、翻译等功能,这些通用功能我就不展开说明了,我着重推荐两个功能:公式识别和表格识别。
公式识别
我之前推荐过公式的识别神器mathpix,真的很好用,但是免费的只有每个月50次,不够。
天若OCR可以设置mathpix的接口,mathpix接口一个月免费1000次识别,应该够了,注册的时候要绑定信用卡(注册过程要科学上网),识别效果:
原图片公式
识别后的公式,可以导出tex或者保存为word文件

表格识别

一般的OCR软件识别文字都问题不大,但是表格识别却是个问题,解决这个问题,这里推荐下腾讯优图的接口,目前每天200次识别免费。在天若OCR里配置好表格识别的接口为腾讯优图后,识别效果如下:

Period
#Node
#Edge
Diameter
#WCC
APL
Over one week
11653
92118
36
200
11
Over two weeks
9904
40772
73
737
24
Over four weeks
6900
14646
18
1433
4
原始表格图片
识别表格效果
识别后的表格,可以直接导入到word:
导入word效果
天若还可以对三线表添加网格后进行识别,非常方便。

3

『在线的latex编辑和编译工具:overleaf』

论文最终展现出来的就是一个PDF格式的文档。
当然可以使用word,但光排版这件事情,就能耗费你一半的精力。
正确的答案是,使用latex,它是一个专业的排版工具,按照latex的语法进行写作,执行编译就能够得到PDF文件。它的语法包含了如何排版,虽然相比word上手要慢,但在排版这件事情上,入门级别的latex语法,你要达到精通word的水平。
latex如何使用呢?当然,要安装编译器,再安装编辑器,本地一通配置,偶尔会遇到些问题,凭着强大的谷歌搜索,倒也不是什么难事。配置本地环境,不如直接使用在线编辑器。
www.overleaf.com
  • 注册即用,免去本地latex环境安装的痛苦。
  • 多人合作,共同编辑。
  • 富文本编辑模式,比写latex源码舒服些。
  • 随时可以完成在线编译,查看PDF。
按照overleaf的开始流程,有选择模板的过程,模板怎么选,还是要看投稿的期刊或者会议的要求。以KDD为例,在它的KDD 2019 Call for Research Papers页面上,给出了模板格式,看看能不能在overleaf上找到,即使没有,一会提供下载,自己上传到overleaf。

走过这一步,已经可以编译出模板PDF了,可以照猫画虎地写起来了。

4

『grammarly:语法纠错神器』

https://app.grammarly.com/
在这编辑文章的一句或一段话,语法出错了会有提示,低级的语法错误都能够避免。
语法纠错
除了语法纠错之外,还有同意替换功能,我的塑料英语能想到的词汇都太过常见,不够精准(逼格不足),选中词就可以同义替换了。
同意替换
建议在word软件中安装grammarly插件,直接可用在word中进行语法校对和纠正。

5

『谷歌翻译』

开始写作前,要纠结一个问题,是先写中文再翻译,还是直接写英文?我觉得,怎么快怎么来,避免拖延,快速开始。英语不过关,翻译软件来凑。
有时候不知道怎么开始一个句型,先中文拿到英文句型的轮廓,再靠着自己的塑料英文加上更多的辅助工具完善,不失为一个好的选择。
translate.google.cn
一个秘传用法:中翻英,改英文,英翻中,改中文。。。反复迭代。

6

『论文绘图工具』

机器学习绘图
1.Scikit-plot
本人在写机器学习相关论文的时候,很多图片是用matplotlib和seaborn画的,但是,我还有一个神器,Scikit-plot,通过这个神器,画出了更加高大上的机器学习图,本文对Scikit-plot做下简单介绍。
仓库地址:
https://github.com/reiinakano/scikit-plot
里面有使用说明和样例(py和ipynb格式)。
使用说明
简单举几个例子:
  • 比如画出分类评级指标的ROC曲线的完整代码:
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB
X, y = load_digits(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33)
nb = GaussianNB()
nb.fit(X_train, y_train)
predicted_probas = nb.predict_proba(X_test)
# The magic happens here
import matplotlib.pyplot as plt
import scikitplot as skplt
skplt.metrics.plot_roc(y_test, predicted_probas)
plt.show()
图:ROC曲线
  • P-R曲线就是精确率precision vs 召回率recall 曲线,以recall作为横坐标轴,precision作为纵坐标轴。首先解释一下精确率和召回率。
图:P-R曲线
  • 混淆矩阵是分类的重要评价标准,下面代码是用随机森林对鸢尾花数据集进行分类,分类结果画一个归一化的混淆矩阵。
图:归一化混淆矩阵
  • 其他图如学习曲线、特征重要性、聚类的肘点等等,都可以用几行代码搞定。
图:学习曲线、特征重要性
仓库地址:
https://github.com/reiinakano/scikit-plot
里面有使用说明和样例。
2.SciencePlots
SciencePlots是一个专门为科研论文打造的轻量化的绘图工具包
网址:
https://github.com/garrettj403/SciencePlots
Github里有实用说明。
简易入门:只需要导入matplotlib工具包,选择相应的style即可。例如,如果想要给Science投稿,那么只需要引入下列的主题:
import matplotlib.pyplot as pltplt.style.use('science')
需要使用IEEE的格式,则是
import matplotlib.pyplot as pltplt.style.use(['science','ieee'])
但是需要注意的是,IEEE的格式会覆盖一些Science的风格,例如列宽,行距等。
绘制结果如下:
深度学习绘图
1.ML Visuals
ML Visuals是一项新的协作努力,通过提供免费的专业、引人注目的和足够的视觉和图形,帮助机器学习社区改进科学交流。您可以在演示文稿或博客文章中自由使用视觉效果。
这个项目地址为:
https://github.com/dair-ai/ml-visuals
Github上面有说明如何使用,大家可以自定义自己需要的图形,上面已经提供了基本的元素,根据自己的需求去调整使用即可!
部分模板:

我们来看一下有哪些模板啊,别急,总共32页ppt,我们看几个:
2.PlotNeuralNet
这个工具是萨尔大学计算机科学专业的一个学生开发的
首先我们看看效果,其github链接如下,将近4000 star:
https://github.com/HarisIqbal88/PlotNeuralNet
看看人家这个fcn-8的可视化图,颜值奇高。
使用的门槛相对来说就高一些了,用LaTex语言编辑,所以可以发挥的空间就大了,你看下面这个softmax层,这就是会写代码的优势了。

参考

[1]:知乎:九老师
[2]:https://www.zotero.org
[3]:https://github.com/reiinakano/scikit-plot
[4]:https://github.com/garrettj403/SciencePlots
[5]:https://github.com/HarisIqbal88/PlotNeuralNet
[6]:https://github.com/dair-ai/ml-visuals
[7]:   AI算法与图像处理(公众号)
[8]:   有三AI(公众号)

7

『总结』

本文分享下作者常用的论文工具,希望对读者写论文有所帮助,祝各位读者都能写出高大上的论文。

技术交流群邀请函

△长按添加小助手

扫描二维码添加小助手微信

请备注:姓名-学校/公司-研究方向
(如:小张-哈工大-对话系统)
即可申请加入自然语言处理/Pytorch等技术交流群

关于我们

MLNLP 社区是由国内外机器学习与自然语言处理学者联合构建的民间学术社区,目前已经发展为国内外知名的机器学习与自然语言处理社区,旨在促进机器学习,自然语言处理学术界、产业界和广大爱好者之间的进步。
社区可以为相关从业者的深造、就业及研究等方面提供开放交流平台。欢迎大家关注和加入我们。

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
梳理机器学习常用算法(含深度学习)这个AI写作工具,1秒生成文章!你确定不来试一下?英文写作中究竟应该如何引用名人名言?ChatGPT 幕后:深度学习崛起的这十年 | 文末赠书话媒活动(75)|“切问多思与循环建构:一次质化论文写作的尝试”分享会提高效率的前提,是熟悉流程精神炼金术 信仰的颠覆(六十一)中国人的论文写作不是规范过了头,而是远远不够规范尚学明德美高线上免费公开课---预备微积分、历史写作、英文写作三女儿与父亲同行佛州(杰克逊维尔)Npj Comput. Mater.: 与材料科学的碰撞:深度学习的近况【感恩节新课】全美前30私立高中在职英文老师带你学会3种学术论文写作!图灵机就是深度学习最热循环神经网络RNN?1996年论文就已证明!积木式深度学习的正确玩法!新加坡国立大学发布全新迁移学习范式DeRy,把知识迁移玩成活字印刷|NeurIPS 2022英文写作丨通过阅读范文和续写,帮助孩子开启科幻写作!留学生如何利用ChatGPT提高效率?现实没你想的那么好!看懂这25个核心概念,就没有啃不动的机器学习论文母亲在养老院去世之后深度 | 红州惊人的犯罪率:三份报告揭示对美国治安的最大误解有了深度学习的加入,生成代码变得更智能、更高效了深度学习先驱者 Geoffrey Hinton 发布新深度学习算法走资派特色党还是为工农服务吗「深度学习+」阶段来了!百度王海峰:深度学习多维度逐渐成熟,创新创造大有可为Nature热议:人工智能参与科研工作,发表SCI论文写作并署名;但大部分科学家表示反对!深度学习工具的「计算显微镜」预测蛋白质相互作用,以及新抗生素的潜在途径ACL2023论文写作能否使用ChatGPT?导师放养,深度学习顶会论文投稿策略7步走!话媒活动(77)|博士论文写作经历分享会基于PyTorch、易上手,细粒度图像识别深度学习工具库Hawkeye开源一个论文写作套路,仅适合小白快速入门2023 JOHN LOCKE论文写作大赛题目公布,老查留学专项辅导开放报名!CV发论文的机会来了!南洋理工项目招生(仅限深度学习,AI,机器学习,迁移学习方向)一文详解缺陷检测的传统算法与深度学习算法(内附16篇前沿论文)駕長車縱橫五萬邁,巡看美國好河山(2)ChatGPT 幕后:深度学习崛起的这十年
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。