Redian新闻
>
NAACL 2022 | 机器翻译SOTA模型的蒸馏

NAACL 2022 | 机器翻译SOTA模型的蒸馏

科技


©PaperWeekly 原创 · 作者 | BNDSBilly

研究方向 | 自然语言处理




Background




ICLR 2021 的一篇文章提出了基于 KNN 方法的机器翻译(kNN-MT),可以将 kNN 方法添加到现有的神经机器翻译模型(NMT)上,从而进一步提升推理表现。该方法帮助当时的 SOTA 德语-英语翻译模型提升了 1.5 BLEU 分数,并且还可以适应跨领域及零样本传输。

本次要分享的论文则是针对 kNN-MT 推理速度过慢的不足,提出了蒸馏方法(kNN-KD)。从而在保持 kNN-MT 表现的情况下,将推理速度提升到了与一般 NMT 模型推理速度相当的水平。



论文标题:
Nearest Neighbor Knowledge Distillation for Neural Machine Translation

收录会议:

NAACL 2022

论文链接:

https://arxiv.org/abs/2205.00479




Methods

2.1 kNN-MT

KNN-MT 方法有两个步骤:

1. Datastore creation:

根据训练集每一条样本离线构建的键值对组合,如下公式所示。其中 表示样本的源语言句和目标语言句, 为翻译过程中第 步时已经推理出来的文本, 表示第 步需要推理的目标语言 token。 表示 经过模型 decoder 编码得到的高维向量。


2. Generation:

推理阶段的每一步时,首先根据 NMT 模型给出下一个 token 的输出概率 ,然后根据 kNN 方法给出下一个 token 的输出概率 ,最终的输出概率为
kNN 输出概率如下:按照构造 Datastore 的方式,根据当前的测试样本先构建当前步骤的 key,然后遍历 Datastore 找到 距离最近的 个结果,将其距离进行一系列操作后,转化为对应 value 的输出概率,如下图所示:


在一般训练 NMT 模型时,通常使用 模型预测结果 和 grount-truth 的交叉熵(CE)进行训练。但在自然语言中,一个句子通常有多种表达,如果模型预测出一个合理但偏离 grount-truth 的词,CE损失也会将其视为错误并惩罚模型,导致模型泛化性变差,这就是所谓的 overcorrection 而在 KNN-MT 中,在解码阶段综合考虑了其他可能的合理解释,在一定程度上缓解了该问题,所以表现有了明显提升。

2.2 kNN-KD

针对 kNN-MT 推理速度很慢的劣势,本文作者提出了 kNN-KD 方法,步骤如下:

1. Datastore creation:与 kNN-MT 相同

2. Distillation:

对于教师模型,在训练前针对每一条训练样本的每一步骤,都按照类似 kNN-MT 中的方法输出下一 token 的生成概率
对于学生模型,针对每一条训练样本的每一步骤,都正常输出下一 token 的生成概率
训练过程中,蒸馏损失为教师模型和学生模型表现的交叉熵:


最终的训练损失即为:

3. Generation:在最终的推理阶段,就不需要再进行 kNN 搜索了,只要按照正常的 NMT 模型进行翻译即可。

KNN-KD 的整体工作流如下图所示:





Experiments
3.1 Setup
本文使用 IWSLT'14 德语-英语(De-En,160k 训练样本)、IWSLT'15 英语-越南语(En-Vi,113k 训练样本)和多域翻译数据集(De-En,733k 训练样本)进行了实验。使用 tst2012 作为验证集,使用 tst2013 作为测试集,分别包含 个句子。

本文所提出的 kNN-KD 是一种无架构方法,可应用于任意 Seq2Seq 模型,可以与其他提升性能的工作同时应用。因此,作者主要将 kNN-KD 与 kNN-MT 以及一些典型的 KD 方法进行比较,包括但不限于 Word-KD、Seq-KD、BERT-KD 和 Selective-KD 等。

实验中所有算法都利用 pytorch 中的 fairseq 工具包实现,在 个 NVIDIA GTX 1080Ti GPU 上进行。实验模型选取 层 Transformer。对于 IWSLT'14 和 IWSLT'15 模型,配置 embedding size 为 ,feed-forward size 为 ,attention heads 为 。针对跨领域数据集,配置 embedding size 为 ,feed-forward size 为 ,attention heads 为
作者提前对 (归一化温度)进行了网格搜索,并选取了验证集上的最佳 BLEU 分数对应的超参数 ,如下表所示,其中 表示 Datastore 中数据个数:



3.2 Results

在 IWSLT 数据集上的实验结果如下表所示,KNN-KD 超过了所有其它强 baseline,比 Transformer 取得了 的 BLEU 分数提升。



在跨领域数据集上,kNN-KD 同样超过了其他 baseline,如下表所示。在各领域中,kNN-KD 均可以超过 kNN-MT 的表现,且推理速度显著提升。



同样,作者也进一步研究了 kNN-KD 的泛化性:在特定领域训练了一个 NMT 模型,并在 out-of-domain 的测试集上进行了测试,实验结果如下表所示,kNN-KD 的泛化性明显优于仅靠标准 CE 训练的 Transformer。





Conclusion

在本文中,作者提出了 kNN-KD,它提取通过 kNN 检索得到的知识,以缓解基础 NMT 模型过度校正的问题。实验表明,kNN-KD 可以改进普通 kNN-MT 和其他baseline,而无需任何额外的训练和解码成本。

更多阅读



#投 稿 通 道#

 让你的文字被更多人看到 



如何才能让更多的优质内容以更短路径到达读者群体,缩短读者寻找优质内容的成本呢?答案就是:你不认识的人。


总有一些你不认识的人,知道你想知道的东西。PaperWeekly 或许可以成为一座桥梁,促使不同背景、不同方向的学者和学术灵感相互碰撞,迸发出更多的可能性。 


PaperWeekly 鼓励高校实验室或个人,在我们的平台上分享各类优质内容,可以是最新论文解读,也可以是学术热点剖析科研心得竞赛经验讲解等。我们的目的只有一个,让知识真正流动起来。


📝 稿件基本要求:

• 文章确系个人原创作品,未曾在公开渠道发表,如为其他平台已发表或待发表的文章,请明确标注 

• 稿件建议以 markdown 格式撰写,文中配图以附件形式发送,要求图片清晰,无版权问题

• PaperWeekly 尊重原作者署名权,并将为每篇被采纳的原创首发稿件,提供业内具有竞争力稿酬,具体依据文章阅读量和文章质量阶梯制结算


📬 投稿通道:

• 投稿邮箱:[email protected] 

• 来稿请备注即时联系方式(微信),以便我们在稿件选用的第一时间联系作者

• 您也可以直接添加小编微信(pwbot02)快速投稿,备注:姓名-投稿


△长按添加PaperWeekly小编




🔍


现在,在「知乎」也能找到我们了

进入知乎首页搜索「PaperWeekly」

点击「关注」订阅我们的专栏吧


·

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
​ACL 2022 | MetaDistil:基于元学习的模型蒸馏Live Nation半年卖1亿张票,Spotify放弃车载硬件,SoundCloud裁员 20%我正告儿子:个人essay写苦练网球?别跟自己有仇!Chinese Soccer’s Financial Woes Deepen as Another Club Folds超50篇论文串联起从VQA到多模态预训练大模型的前世今生—Part 2引入稀疏激活机制!Uni-Perceiver-MoE显著提升通才模型的性能NAACL 2022 | 简单且高效!随机中间层映射指导的知识蒸馏方法气候学家“联名上书”:模型的使用夸大了全球变暖的影响[震惊]温哥华那座全球知名的蒸气钟被毁了!碎片遍地!贝叶斯深度学习:一个统一深度学习和概率图模型的框架如何"借"一双慧眼看穿波动?1987年大崩盘留下的启示:"价值先生"才是同盟,请忘掉"市场先生"大模型时代,那些一起训练AI模型的企业是怎么应对数据顾虑的?HIRE——基于异构图神经网络的高阶关系级知识蒸馏方法正在直播丨消化道肿瘤精准治疗的沿革变迁及未来方向:源于肿瘤生物模型的功能性检测​ACL 2022 | 普林斯顿陈丹琦组:模型剪枝的加速方法这孩子没有上大学,这可咋办呀?ACL 2022 | 基于Prompt的自动去偏:有效减轻预训练语言模型中的偏见马斯克收购推特,真的是为了捍卫言论自由吗?四姐冰花煎饺东北晚餐【7.21今日折扣】COACH低至半价!倩碧官网套装甩卖!Clarisonic洗脸刷礼盒超低价!Hunterboots巨折人形机器人?陪伴机器人?什么是消费机器人的未来 | 5Y 3Sigma小圆桌开源大模型的力量:为AI注入“灵魂”,和你一起玩剧本杀太魔幻了!DALL·E 2 居然能用自创的语言来生成图像,AI模型的可解释性再一次暴露短板龙卷风健康快递 169近200篇文章汇总而成的机器翻译非自回归生成最新综述,揭示其挑战和未来研究方向Ladder Side-Tuning:预训练模型的“过墙梯”​ACL 2022杰出论文:为什么生成式大规模预训练模型难以量化?二季度市场上演"V型"反转,丘栋荣、祁禾等却被"扫货"!来看"圈里人"怎么选基金百度提出动态自蒸馏方法,结合交互模型与双塔模型实现稠密段落检索最大回撤超30%,"固收+"怎么变成"固收-"?昔日"爆款"遭质疑,如今如何再出发?关于soil、sol、soleil及相关词语的考据给我翻译翻译,“大翻译”究竟是什么东西?
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。