Redian新闻
>
顶刊TIP 2023!重新思考跨域行人检测:无实例单阶段检测器的背景聚焦分布对齐框架

顶刊TIP 2023!重新思考跨域行人检测:无实例单阶段检测器的背景聚焦分布对齐框架

公众号新闻

点击下方卡片,关注“CVer”公众号

AI/CV重磅干货,第一时间送达

点击进入—>【目标检测和Transformer】交流群

作者:蔡彦成(源:知乎,已授权)| 编辑:CVer公众号

https://zhuanlan.zhihu.com/p/652557366

大家好!我是蔡彦成https://cademic.html,目前是即将入学的剑桥大学一年级博士生。

我很高兴向大家介绍我于复旦大学陈涛老师组完成的第一作者研究工作Rethinking Cross-Domain Pedestrian Detection: A Background-Focused Distribution Alignment Framework for Instance-free One-Stage Detectors,该文章已经被顶级期刊IEEE Transactions on Image Processing (T-IP)接收

文章链接:

https://ieeexplore.ieee.org/document/10231122

在CVer公众号后台回复:BFDA,可下载本论文pdf

在进行跨域目标检测和行人检测任务时,研究人员针对诸如 Faster RCNN 等双阶段检测器,提出了许多有效的算法框架,例如实例级特征对齐等。然而,从实际应用的角度来看,像 YOLOv5 这样的单阶段检测器具备更快的处理速度。然而,由于单阶段检测器实例级特征难以获得,其跨域对齐存在前景-背景错误对齐问题,即【源域图像中的前景特征与目标域图像中的背景特征被错误地对齐】或【源域背景与目标域前景被错误地对齐】。下图展示了前景-背景错误对齐问题。

Figure 1. 前景-背景特征错误对齐问题和背景特征的重要性。

Figure 2. 典型图像级跨域自适应(第一行)和BFDA(第二行)的特征图演化过程图示。


为了解决这一问题,我们系统地分析了前景和背景在图像级跨域对齐中的重要性,并认识到在图像级跨域对齐中,背景起着更为关键的作用。因此,本文提出了一种新颖的框架,即背景聚焦分布对齐(Background-Focused Distribution Alignment,BFDA),来训练域自适应的单阶段行人检测器。具体来说,BFDA 首先将背景特征与整个图像特征图解耦,然后通过一种长短程域判别器将它们进行对齐。

Figure 3. 完整的BFDA框架结构,分为四个核心部分:YOLOv5基检测器,背景解耦模块(BDM),特征生成模块(FGM),长短程域判别器(LSD)。

大量实验表明,与主流领域适应技术相比,BFDA 显著增强了单阶段和双阶段检测器的跨域行人检测性能。此外,通过采用高效的单阶段检测器(YOLOv5),BFDA在NVIDIA Tesla V100上可以达到217.4 FPS(640×480像素)(是现有框架FPS的7~12倍),这对于实际应用具有非常重要的意义。

Figure 4. 在 Cityscapes -> Foggy Cityscapes 和 Cityscapes -> Caltech 两个实验设置下的跨域行人检测结果对比,明显BFDA可以解决传统图像级跨域对齐方法存在的前景-背景特征错误对齐问题。

我们的贡献总结如下:

(1)我们的研究揭示了单阶段行人检测器在执行图像级特征对齐时所面临的前景-背景特征错误对齐问题。此外,我们发现在实现跨域行人检测时,确保背景特征的域间一致性是至关重要但未被充分重视的方面。据我们所知,我们是第一个提出在跨域检测中专注于背景对齐的研究。

(2)我们提出了一种新的背景聚焦跨域行人检测框架,包括三个关键模块:背景解耦模块(BDM)、特征生成模块(FGM)和基于并行Transformer-CNN的长短程域鉴别器(LSD)。这一框架通过将背景特征从原始特征图中解耦,实现了纯背景特征对齐,从而有效缓解了前景-背景特征不匹配问题。

(3)我们使用BFDA在跨域行人检测上进行了实验,结果表明所提出的BFDA在单阶段检测器YOLOv5上能够实现最先进的性能。

非常感谢我的共同作者们的贡献:
Bo Zhang, Baopu Li, Tao Chen, Hongliang Yan, Jingdong Zhang, Jiahao Xu

在CVer公众号后台回复:BFDA,可下载本论文pdf

点击进入—>【图像分割和Transformer】交流群


ICCV / CVPR 2023论文和代码下载


后台回复:CVPR2023,即可下载CVPR 2023论文和代码开源的论文合集

后台回复:ICCV2023,即可下载ICCV 2023论文和代码开源的论文合集

图像分割和Transformer交流群成立


扫描下方二维码,或者添加微信:CVer333,即可添加CVer小助手微信,便可申请加入CVer-图像分割或者Transformer 微信交流群。另外其他垂直方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch、TensorFlow和Transformer、NeRF等。


一定要备注:研究方向+地点+学校/公司+昵称(如图像分割或者Transformer+上海+上交+卡卡),根据格式备注,可更快被通过且邀请进群


▲扫码或加微信号: CVer333,进交流群


CVer计算机视觉(知识星球)来了!想要了解最新最快最好的CV/DL/AI论文速递、优质实战项目、AI行业前沿、从入门到精通学习教程等资料,欢迎扫描下方二维码,加入CVer计算机视觉,已汇集数千人!


扫码进星球


▲点击上方卡片,关注CVer公众号

整理不易,请点赞和在看

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
花·海无需人类反馈即可对齐!田渊栋团队新作RLCD:无害型、有益性、大纲写作全面超越基线模型2023 加拿大森林大火纪实【仲夏风轻】2023 加拿大森林大火纪实万字长文概览大语言模型对齐(欺骗性对齐、可扩展的监管、机械可解释性、工具性目标趋同)UC伯克利教授惊人预测:2030年GPT可执行人类180万年工作,一天学2500年知识2023 查尔斯河国庆夜的烟火恒大地产新增多条被执行人信息;欧盟宣布对微软产品捆绑销售进行反垄断调查丨大公司动态ICCV 2023 | ReDB:通过可靠、多样和类平衡的伪标签重新审视跨域3D目标检测ICCV 2023 | 刷新多项记录!武大&快手提出DVIS:解耦视频实例分割框架俄乌战况6顶刊TMM 2023!中科院提出CLIP-VG:基于自步课程学习实现CLIP在视觉语言理解与定位任务上的无监督迁移研究八十六 郭老自然部 公安部《关于加强协作配合强化自然资源领域行刑衔接工作的意见》ICCV 2023 | SparseBEV:高性能、全稀疏的纯视觉3D目标检测器ICCV 2023|目标检测新突破!AlignDet:支持各类检测器完全自监督预训练的框架ICCV 2023 | 发挥offline方法的潜力,武大&快手提出解耦合的视频实例分割框架DVIS顶刊TPAMI 2023!西电提出TIB:通过双流信息瓶颈检测未知物体ICCV 2023 | 华为诺亚提出全新目标检测器Focus-DETRIJCAI2023 | 实现跨域NER的协同领域前缀微调策略独家|OpenAI超级对齐负责人Jan Leike:如何破解对齐难题?用可扩展监督“净零排放”面临质疑,欧洲多国政党重新思考环保效益“不发顶刊就分手!”某院医学博士因没有顶刊被甩!反手就报复性发文!OpenAI破解对齐难题?超级对齐负责人Jan Leike采访实录:「可扩展监督」是良策乡村女教师回国见闻 – 微信支付ICCV 2023 | 图像重缩放新方法:无需对模型重新训练即可提高性能ICCV 2023 | 发挥offline方法的潜力:解耦合的视频实例分割框架DVIS刀法峰会办到第五届,我重新思考了一下大家到底需要什么?教师节特写|他们在教师节重新思考“老师”的意义遥感顶刊TGRS 2023!MUS-CDB:遥感目标检测中的主动标注的具有类分布平衡的混合不确定性采样凯文·凯利:从技术角度重新思考ESG阿里云倚天实例技术公开课上线,两节课直播讲解倚天实例技术架构、应用实践与软件迁移无实质性违约!碧桂园兑付2250万美元的境外债票息中年落魄男八十五 捕鱼顶刊TPAMI 2023!生成式AI与图像合成综述发布!如何重新思考你的谈话习惯,应对冲突ICCV 2023 | 通过可靠、多样和类平衡的伪标签重新审视跨域三维目标检测用AI对齐AI?超级对齐团队领导人详解OpenAI对齐超级智能四年计划
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。