ICCV 2023 | 清华&天津大学提出SurroundOcc:自动驾驶的环视三维占据栅格预测
点击下方卡片,关注“CVer”公众号
AI/CV重磅干货,第一时间送达
AI/CV重磅干货,第一时间送达
作者:韦祎(源:知乎,已授权)| 编辑:CVer公众号
https://zhuanlan.zhihu.com/p/652974165
本文是对我们ICCV 2023被接收的文章Multi-camera 3D Occupancy Prediction for Autonomous Driving的介绍。在这个工作中,我们通过多帧点云构建了稠密占据栅格数据集,并设计了基于transformer的2D-3D Unet结构的三维占据栅格网络。很荣幸地,我们的文章被ICCV 2023收录,目前项目代码已开源,欢迎大家试用。
arXiv:arxiv.org/pdf/2303.09551
Code:https://github.com/weiyithu/SurroundOcc
主页:https://weiyithu.github.io/SurroundOcc/
最近一直在疯狂找工作,没有闲下来写,正好最近提交了camera-ready,作为一个工作的收尾觉得还是写个知乎总结下。总的来说,contribution分为两块,一部分是如何利用多帧的lidar点云构建稠密occupancy数据集,另一部分是如何设计occupancy预测的网络。其实两部分的内容都比较直接易懂,大家有哪块不理解的也可以随时问我。那么这篇文章我想讲点论文之外的事情,一个是如何改进当前方案使其更加易于部署,另一个是未来的发展方向。
部署
一个网络是否易于部署,主要看其中有没有比较难在板端实现的算子,SurroundOcc这个方法里比较难搞的两个算子是transformer层以及3D卷积。
transformer的主要作用是将2D feature转换到3D空间,那么其实这部分也可以用LSS,Homography甚至mlp来实现,所以可以根据已实现的方案去修改这部分的网络。但据我所知,transformer的方案在几个方案里对calibration不敏感并且性能也比较好,建议有能力实现transformer部署的还是利用原有方案。
对于3D卷积来说,可以将其替换成2D卷积,这里需要将原来 (C, H, W, Z) 的3D feature reshape成(C*Z, H, W)的 2D feature,然后就可以用2D卷积进行特征提取了,在最后occupancy预测那步再把它reshape回(C, H, W, Z),并进行监督。另一方面,skip connection由于分辨率比较大所以比较吃显存,部署的时候可以去掉只留最小分辨率那一层。我们实验发现3D卷积中的这两个操作在nuscenes上都会有些许掉点,但业界数据集规模要远大于nuscenes,有时候有些结论也会改变,掉点应该会少甚至不掉。
数据集构建方面,最耗时的一步是泊松重建那步。由于我们用的是nuscenes数据集,是用32线lidar采集的,即使利用了多帧拼接技术,我们发现拼接后的点云还是有很多的洞,所以我们利用泊松重建补洞。但其实现在业界用的许多lidar的点云都比较稠密,例如M1,RS128等,那么泊松重建这一步可以省略,将加速数据集构建这一步。
另一方面,SurroundOcc里是利用nuscenes中标注好的三维目标检测框将静态场景和动态物体分离的。但实际应用过程中,可以利用autolabel,也就是三维目标检测&跟踪大模型去得到每个物体在整个sequence中的检测框。相较于人工标注的label,利用大模型跑出来的结果肯定会存在一些误差,最直接的体现就是多帧的物体拼接后会有重影的现象。但其实occupancy对于物体形状的要求没有那么高,只要检测框位置比较准就能满足需求。
未来方向
当前方法还是比较依赖lidar提供occupancy的监督信号的,但很多车上,尤其是一些低阶辅助驾驶的车上没有lidar,这些车通过shadow模式可以传回来大量的RGB数据,那么一个未来方向是能不能只利用RGB进行自监督学习。一个自然的解决思路就是利用NeRF进行监督,具体来说,前面backbone部分不变,得到一个occupancy的预测,然后利用体素渲染得到每个相机视角下的RGB,和训练集中的真值RGB做loss形成监督信号。但很可惜的是这一套straightforward的方法我们试了试并不是很work,可能的原因是室外场景range太大,nerf可能hold不住,但也可能我们没有调好,大家也可以再试试。
另一个方向是时序&occupancy flow。其实occupancy flow对于下游任务的用处远比单帧occupancy大。ICCV的时候没来得及整occupancy flow的数据集,而且发paper的话还要对比很多flow的baseline,所以当时就没搞这块。时序网络可以参考BEVFormer和BEVDet4D的方案,比较简单有效。难的地方还是flow数据集这一部分,一般的物体可以用sequence的三维目标检测框算出来,但异型物体例如小动物塑料袋等,可能需要借助场景流的方法进行标注。
ICCV / CVPR 2023论文和代码下载
后台回复:CVPR2023,即可下载CVPR 2023论文和代码开源的论文合集
后台回复:ICCV2023,即可下载ICCV 2023论文和代码开源的论文合集
目标检测和Transformer交流群成立
扫描下方二维码,或者添加微信:CVer333,即可添加CVer小助手微信,便可申请加入CVer-目标检测或者Transformer 微信交流群。另外其他垂直方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch、TensorFlow和Transformer、NeRF等。
一定要备注:研究方向+地点+学校/公司+昵称(如目标检测或者Transformer+上海+上交+卡卡),根据格式备注,可更快被通过且邀请进群
▲扫码或加微信号: CVer333,进交流群
CVer计算机视觉(知识星球)来了!想要了解最新最快最好的CV/DL/AI论文速递、优质实战项目、AI行业前沿、从入门到精通学习教程等资料,欢迎扫描下方二维码,加入CVer计算机视觉,已汇集数千人!
▲扫码进星球
▲点击上方卡片,关注CVer公众号
整理不易,请点赞和在看
微信扫码关注该文公众号作者