Redian新闻
>
NeurIPS 2023 | 李飞飞团队提出SiamMAE:孪生掩码自编码器,刷榜视觉自监督方法!

NeurIPS 2023 | 李飞飞团队提出SiamMAE:孪生掩码自编码器,刷榜视觉自监督方法!

公众号新闻

点击下方卡片,关注“CVer”公众号

AI/CV重磅干货,第一时间送达

点击进入—>【计算机视觉和Transformer】交流群


在CVer微信公众号后台回复:SiamMAE,可以下载本论文pdf,学起来!


转载自:新智

【导读】只需一个简单操作扩展MAE,即可实现自监督学习新sota!


在计算机视觉领域,想要建立图像和场景(scene)之间之间的对应关系是一项比较困难的任务,尤其是在存在遮挡、视角改变或是物体外观发生变化的情况下。


最近,斯坦福大学李飞飞团队对MAE进行扩展,提出了孪生掩码自编码器SiamMAE(Siamese Masked Autoencoders以学习视频中的视觉对应关系。


论文链接(收录NeurIPS 2023 Oral):

https://siam-mae-video.github.io/resources/paper.pdf

主页:https://siam-mae-video.github.io/


先随机采样两个视频帧,并进行非对称掩码操作;然后SiamMAE编码器网络对两个帧进行独立处理,最后使用交叉注意层组成的解码器来预测未来帧(future frame)中丢失的图像块。


通过对未来帧中的大部分(95%)图像块进行掩码,同时保持过去帧(past frame)图像不变,SiamMAE促使网络专注于物体运动,并学习以物体为中心的表征。



尽管整个网络的设计概念比较简单,但通过SiamMAE学习到的特征在视频物体分割、姿势关键点传播和语义部分传播任务上都优于最先进的自监督方法。


SiamMAE在不依赖于数据增强、基于手工跟踪的前置任务或其他技术来防止表征崩溃的情况下,实现了非常有竞争力的性能。


孪生掩码自编码器


研究人员的目标是开发一种自监督的方法来学习对应关系,主要是将掩码自编码器(MAE)模型扩展到视频数据中。



Patchify


给定具有L帧的视频剪辑,首先随机采样两个视频帧,两帧之间的距离通过从预定的potential frame gaps范围中选择一个随机值来确定。


与原始ViT模型类似,通过将每个帧转换为一系列不重叠的N×N个patch来拼接视频帧。


最后,把位置嵌入加到线性投影上,并附加一个[CLS]标记,需要注意的是没有使用时序位置嵌入。


Masking


像图像和视频这样的自然信号是高度冗余的,分别表现为空间和时空上的冗余。

为了创造一个具有挑战性的预测性自监督学习任务,MAEs随机掩码了75%的图像patch,视频数据的掩码率提升到90%,并且对每帧都使用相同的掩码率。


这种设计可以使网络无法利用和学习到时间上的对应关系,避免在对应关系学习基准上达到次优性能。


研究人员认为,不对称的掩码可以创造一个更有挑战性的自监督学习任务,并且可以鼓励网络学习时间上的相关性。


所以对于采样的两个视频帧,对第一帧选择不掩码,对第二帧选择掩码95%,这样就可以将整个过去帧(entire past frame)作为输入,网络只需要将其扩散到未来中的适当位置即可,可以促进网络对物体运动进行建模并关注物体的边界。



为了进一步增加任务的难度,两个视频帧之间具有更大的时间间隔,尽管可能会导致对未来的预测变得模糊,并可能产生多种合理的结果,但为第二帧提供少量的patch作为输入,可以让网络的自监督学习变得更困难。


编码器


研究人员探索了两种不同的编码器配置来处理输入帧。


联合编码器(joint encoder)是图像MAEs在一对视频帧上的扩展,把两帧未掩码的图像patch串联起来,然后输入到标准的ViT编码器中进行处理。


孪生编码器(siamese encoder)是用于比较实体的权重共享神经网络,是对比表征学习方法的一个重要组件,用于对应学习(corresponding learning)时通常需要一些信息瓶颈来防止网络学习的解决方案,如使用颜色通道dropout来迫使网络避免依赖颜色来匹配对应关系。


在这篇论文中,研究人员使用孪生编码器来独立处理两幅图像,使用非对称掩码作为信息瓶颈。


解码器


编码器的输出通过线性层进行投影,并加入带有位置嵌入的[MASK] token,以生成对应于输入帧的所有token


研究人员探索了三种不同的解码器配置:


联合解码器(joint decoder)在两帧的token串联上使用原版Transformer模块,其主要缺点是对GPU内存的需求大幅增加,特别是在使用较小的patch尺寸时。


交叉自解码器(cross-self decoder)与原版Transformer模型的编码-解码器设计类似,每个解码器块由一个交叉注意力层和一个自注意力层组成,来自第二帧的token通过交叉注意力层与第一帧的token进行注意力操作,然后通过自注意力层进行相互融合。


可以注意到,交叉注意力层在功能上类似于自监督对应学习方法中经常使用的affinity矩阵。


交叉解码器(cross decoder)由交叉注意力层的解码器块组成,其中来自第二帧的token与来自第一帧的token进行注意力操作。


最后,解码器的输出序列被用来预测掩码图像块中的归一化像素值,在解码器的预测和真实值之间使用L2损失。


实验结果



视频物体分割


在多物体分割基准数据集DAVIS 2017上,使用480p分辨率的图像对模型进行评估。


实验结果可以发现SiamMAE明显优于VideoMAE(从39.3%提升到62.0%),研究人员将其归因于VideoMAE中使用了tube掩码方案,使得模型无法学习时间上的对应关系。



与DINO类似,研究人员也发现降低patch的尺寸会带来明显的性能提升。


并且文中使用的ViT-S/8(+9.4%)模型优于之前所有的对比学习和自监督的对应学习方法。



还可以注意到尽管较大的MAE-ST模型(ViT-L/16,304M参数)在随机掩码的情况下比VideoMAE表现更好,但其性能仍然落后于SiamMAE相当多。


而且在视频上训练的MAE与图像MAE的表现相似,视频与图像的不同之处在于,图像是(近似)各向同性的,时间维度是特殊的,并不是所有的时空方向都是同等可能的。


因此,对称地处理空间和时间信息可能是次优的。


视频部分分割(Video Part Segmentation)


在视频实例解析(Video Instance Parsing, VIP)基准上对SiamMAE进行评估,该基准包括为20个不同的人体部位传播语义掩码。


与评估的其他数据集相比,VIP特别具有挑战性,因为包括更长的视频(最长120秒)。


与先前工作类似,使用560×560的图像和单一背景帧进行评估后,可以发现ViT-S/8模型性能大大超越了DINO (从39.5提升到45.9)。



SiamMAE从更小的patch尺寸中,比DINO受益更多,实现了+8.6的mIoU评分,比DINO的+3.3 mIoU有所提高。


SiamMAE也优于之前所有的对比学习和自监督的对应关系学习方法。


姿势追踪(pose tracking)


在关键点传播的任务上对SiamMAE进行了评估,需要传播15个关键点,并且要求空间上的精确对应关系,使用320×320的图像和一个单一的背景帧,SiamMAE的性能优于所有其他模型,并且比DINO更受益于较小的patch尺寸(+14.9到+10.9 [email protected]


在CVer微信公众号后台回复:SiamMAE,可以下载本论文pdf,学起来!

点击进入—>【计算机视觉和Transformer】交流群


最新CVPR 2023论文和代码下载


后台回复:CVPR2023,即可下载CVPR 2023论文和代码开源的论文合集

后台回复:Transformer综述,即可下载最新的3篇Transformer综述PDF


目标检测和Transformer交流群成立


扫描下方二维码,或者添加微信:CVer333,即可添加CVer小助手微信,便可申请加入CVer-目标检测或者Transformer 微信交流群。另外其他垂直方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch、TensorFlow和Transformer等。


一定要备注:研究方向+地点+学校/公司+昵称(如目标检测或者ransformer+上海+上交+卡卡),根据格式备注,可更快被通过且邀请进群


▲扫码或加微信号: CVer333,进交流群


CVer计算机视觉(知识星球)来了!想要了解最新最快最好的CV/DL/AI论文速递、优质实战项目、AI行业前沿、从入门到精通学习教程等资料,欢迎扫描下方二维码,加入CVer计算机视觉,已汇集数千人!


扫码进星球


▲点击上方卡片,关注CVer公众号

整理不易,请点赞和在看

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
NeurIPS 2023 | 王利民团队提出MixFormerV2:首个基于ViT并在CPU设备实时运行的目标跟踪器!盆栽蔬菜-container gardeningNeurIPS 2023 Spotlight | 半监督与扩散模型结合,实现少标签下可控生成齐风讲段子:家访让大模型看图比打字管用!NeurIPS 2023新研究提出多模态查询方法,准确率提升7.8%NeurIPS 2023 | 中科院&旷视提出DropPos:全新的自监督视觉预训练代理任务ICCV 2023 | 新注意力!清华黄高团队提出FLatten Transformer视觉新主干NeurIPS 2023 | 北大&华为提出:多模态基础大模型的高效微调​KDD 2023 | MaskGAE:图自编码器背后的掩码机理NeurIPS 2023 | 北大具身智能团队提出需求驱动导航:对齐人类需求,让机器人更高效ICCV 2023 | 用“自编码器+多模态学习”更有效地解决3D物体可供性问题既是自编码器,也是RNN,DeepMind科学家八个视角剖析扩散模型李飞飞新书即将发布,Hinton力荐!Jim Fan:2023年最重磅AI著作意念操纵机器人成真!李飞飞团队打造,做家务玩游戏样样能行NeurIPS 2023 | InstructBLIP:指令微调训练通用视觉-语言模型NeurIPS 2023 | 扩散模型再发力!微软提出TextDiffuser:图像生成的文字部分也能搞定!ICCV 2023 | 上交提出CCD:基于自监督字符到字符蒸馏的文本识别【2023 坛庆】 ※ 烟雨行舟 ※ 夜垂云流缓 清梦醉阑珊NeurIPS 2023 Spotlight|高质量多视角图像生成,完美复刻场景材质!SFU等提出MVDiffusion【2023 坛庆】贴首今天吹的笛子【2023 坛庆】山之茶顶刊TMM 2023!中科院提出CLIP-VG:基于自步课程学习实现CLIP在视觉语言理解与定位任务上的无监督迁移研究NeurIPS 2023 | 任意模型都能蒸馏!华为诺亚提出异构模型的知识蒸馏方法NeurIPS 2023 | 港科大提出EAC:"可解释一切"图像概念解释器NeurIPS 2023 | RevCol V2: 当解耦学习遇上自监督训练,视觉预训练的思路揭秘编码器与解码器语言模型朱批《毛批三国》 第四回 废汉帝陈留践位 谋董贼孟德献刀NeurIPS 2023 | 东南大学&上交提出H2RBox-v2:旋转目标检测新网络NeurIPS 2023 | 旷视张祥雨等人提出RevColV2:当解耦学习遇见自监督训练!视觉预训练新思路NeurIPS 2023 | Backbone之战:计算机视觉任务模型大比较李飞飞团队新作:脑控机器人做家务,让脑机接口具备少样本学习能力「无需配对数据」就能学习!浙大等提出连接多模态对比表征C-MCR|NeurIPS 2023【2023 坛庆】《菊花台》糖尿病补充剂 2023.6.13AI「脑补」画面太强了!李飞飞团队新作ZeroNVS,单个视图360度全场景生成温哥华的同性恋游行NeurIPS 2023 | MSRA、清华、复旦等联合提出AR-Diffusion:基于自回归扩散的文本生成NeurIPS 2023 | 大模型时代自监督预训练的隐性长尾偏见玻璃缸里的孙凤 (25)NeurIPS 2023 | 超越YOLO系列!华为提出Gold-YOLO:实时目标检测新SOTA
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。