Redian新闻
>
GPT-4教会机器手转笔、玩魔方!RL社区震惊:LLM设计奖励竟能超越人类?

GPT-4教会机器手转笔、玩魔方!RL社区震惊:LLM设计奖励竟能超越人类?

公众号新闻



  新智元报道  

编辑:Aeneas 润
【新智元导读】来自英伟达等机构的研究者,竟然让GPT-4教会机器人转笔、玩魔方?通过编码大语言模型,可以完成超越人类水平的奖励设计,整个RL社区都震惊了。

GPT-4,竟然教会机器人转笔了!

英伟达、宾大、加州理工、德州奥斯汀等机构的专家提出一个开放式Agent——Eureka,它是一个开放式Agent,为超人类水平的机器人灵巧性设计了奖励功能。

论文链接:https://arxiv.org/pdf/2310.12931.pdf

项目链接:https://eureka-research.github.io/

代码链接:https://github.com/eureka-research/Eureka

作者之一的英伟达高级科学家Jim Fan对此点评道:这简直就像物理模拟器API空间中的旅行者空间探测器!

以往,LLM和机器人结合的应用案例,往往是让大模型帮助机器人规划高级任务。比如,让LLM告诉机器人,把大象装进冰箱需要3步,打开冰箱,把大象放进去,再关上冰箱门。

然而控制机器人完成打开冰箱,放置大象,和关上冰箱门这3个具体的低级动作,机器人需要依靠其他的方式来控制完成。

但是英伟达等机构的研究人员开发出的Eureka系统,可以让GPT-4直接教机器人完成基本的动作。

具体来说,它是一个GPT-4加持的奖励设计算法,充分利用了GPT-4优秀的零样本生成、代码生成和上下文学习的能力,产生的奖励可以用于通过强化学习来让机器人获得复杂的具体技能。

在没有任何特定于任务的提示或预定义的奖励模板的情况下,Eureka生成的奖励函数的质量,已经能够超过人类专家设计的奖励!

从此,LLM+机器人又有了新玩法。

同往常一样,代码是开源的。

全体RL社区,起立!

AI学者惊呼:全体RL社区都应该对Eureka论文感到敬畏和震惊。
如果按他们的方法一遍一遍重复,RL会在不同的任务中取得超越人类的成功,并且完全不需要人工干预!

几年前,RL似乎让业界有野心实现AGI,但后来发生的事情,让RL被降级为蛋糕上的樱桃,而LLM一直是那块缺失的拼图。

如今,基于自我改进的正反馈循环很可能即将到来,进而让我们拥有超越人类的训练数据和能力。

Jim Fan还表示,Eureka可以应用机器人之外的许多场景,比如动画和游戏。

动画即是控制虚拟世界中的角色,这是劳动密集型的工作:工作室让艺术家用手画每一帧,或者让演员做MoCap。即便如此,动作也是静态数据,无法对动态变化的环境做出反应。

而Eureka是通用的,提供了一种快速扩展物理逼真和响应式动画的方法。它可以成为艺术家的copilot,通过自然语言界面创造新的灵巧技能。而且,游戏甚至可以通过使用临时奖励功能微调控制器,来动态生成行为。

《艾尔登法环》的Boss战中,女神玛莲妮亚标志性的「水鸟乱舞」动作不知道需要多少天的手工工作

在编码和电机控制之间,架起桥梁

Eureka在高级推理(编码)和低级电机控制之间,架起了一座桥梁,弥合了差距。

它是一种「混合梯度架构」:一个黑盒、纯推理的LLM指导一个白盒、可学习的神经网络。

外循环运行 GPT-4 以优化奖励函数(无梯度),而内循环运行强化学习以训练机器人控制器(基于梯度)。

研究者之所以能扩大Eureka的规模,这要归功于IsaacGym,这是一款GPU加速的物理模拟器,可将现实速度提高1000倍。
在10个机器人执行的29项基准任务中,Eureka在83%的任务中获得的奖励超过了人类编写的专家奖励,平均提高幅度达52%。

Eureka奖励和策略

研究人员展示了Eureka设计的奖励以及使用这些奖励为每个环境训练的策略:

在两个开源基准测试:Isaac Gym (Isaac) 和Bidexterous Manipulation (Dexterity)中,Eureka针对10个机器人和29个独立任务设计了奖励。
最让人惊讶的是,Eureka竟然学会了转笔!要知道,即使是CGI艺术家,也很难把它逐帧制作成动画。

网格中心的视频展示的是笔的旋转轴垂直于手掌,将笔平行与手掌进行旋转(经典的转笔动作)。此外,研究人员还训练了围绕不同轴转笔的其他几种变体。
并且,Eureka还实现了一种新形式的上下文RLHF,它能将人类操作员的自然语言反馈纳入其中,以引导和调整奖励功能。
而且,机器人工程师设计复杂的运动行为时,这种RLHF还可以提供强大的co-pilot功能。
在机器人学习中,大语言模型一直擅长的是生成高级计划和中级动作,比如拾取和放置(VIMA、RT-1 等),但在复杂的高频运动控制上,LLM就有所欠缺了。
而Eureka时刻通过编码实现了奖励功能,这是LLM学习灵巧技能的关键入口。

Eureka的构成组件

Eureka通过在上下文中发展奖励功能,实现了人类水平的奖励设计。

它有3个关键组成部分。
  1. 模拟器环境代码作为上下文,快速启动初始「种子」奖励函数。

  2. GPU上的大规模并行RL,可以快速评估大量候选奖励。

  3. 奖励反射可在上下文中产生有针对性的奖励突变。

将原始环境用作LLM上下文

首先,通过使用原始的IsaacGym环境代码作为上下文,Eureka已经可以生成可用的奖励程序,而无需任何特定任务的提示工程。
这就使得Eureka成为一个开放式的通用奖励设计师,在第一次尝试时就可以轻松地为所有的环境生成奖励函数。
其次,Eureka 会在每个进化步骤中生成许多候选奖励,然后使用完整的RL训练循环对其进行评估。
通常,这个过程非常缓慢,可能需要几天甚至几周。
而有了英伟达的GPU原生机器人训练平台IsaacGym (https://developer.nvidia.com/isaac-gym),这一规模可以迅速扩大,将模拟时间提高了1000倍。
现在,RL内循环可以在几分钟内完成!

Eureka奖励反思(Reward Reflection)

Eureka依赖于奖励反思,这是对RL训练的自动文本总结。
因为GPT-4在上下文代码修复上的卓越能力,使得Eureka能够执行有针对性的奖励突变。

实验

研究人员在一系列不同的机器人实施例和任务上对 Eureka 进行了全面评估,测试其生成奖励函数、解决新任务以及整合各种形式的人类输入的能力。

研究人员的环境由10 个不同的机器人和使用IsaacGym模拟器执行的29个任务组成。
首先,研究人员包括来自 IsaacGym (Isaac) 的 9 个原始环境,涵盖从四足、双足、四旋翼、协作机器人手臂到灵巧手的各种机器人形态。
除了囊括了机器人外形尺寸之外,研究人员还通过纳入Dexterity基准测试中的所有 20 项任务来确保评估的深度。
Dexterity包含20项复杂的双手动任务,需要一双影子手来解决各种复杂的具体操作技能,从物体交接到将杯子旋转180度。

评估结果

Eureka可以生成超人类水平的奖励函数
在29项任务中,Eureka生成的奖励在83%的任务上表现优于人类专家编写的奖励,平均标准化提升为52%。
特别是,Eureka在高维Dexterity环境中实现了更大的收益。
Eureka进化奖励搜索可以随着时间的推移实现持续的奖励改进
Eureka通过将大规模奖励搜索与详细奖励反思反馈相结合,逐步产生更好的奖励,最终超过人类水平。
Eureka生成的原创性奖励
研究人员通过计算所有Isaac任务上的Eureka和人类奖励之间的相关性来评估Eureka奖励的新颖性。
如上图所示,Eureka主要生成弱相关的奖励函数,其表现优于人类的奖励函数。
此外,研究人员观察到任务越难,Eureka奖励的相关性就越小。在某些情况下,Eureka奖励甚至与人类奖励呈负相关,但表现却明显优于人类奖励。

通过课程学习来教会灵巧转笔


转笔任务需要影子手不断旋转笔,以实现一些预定义的旋转模式,完成尽可能多的循环。
研究人员通过以下方式解决此任务:
(1)指示 Eureka 生成奖励函数,用于将笔重新定向到随机目标配置,然后
(2)使用 Eureka 奖励微调此预训练策略以达到所需的笔序列-旋转配置。
如图所示,Eureka微调很快就适应了策略,成功地连续旋转了许多个周期。相比之下,预训练或从头开始学习的策略连单个周期都无法完成。

5次查询,教会人形机器人稳定地跑步!

Eureka能否根据人类反馈进行调整呢?

目前为止,Eureka可以通过环境反馈全自动运行。
为了捕捉人类的细微偏好,Eureka还可以使用自然语言反馈来共同引导奖励设计。
这就产生了一种新颖的无梯度情境下的RLHF。
带有人类反馈的Eureka只用了5次查询,就教会了人形机器人如何稳定地跑步!
而在没有RLHF前,人形机器人是这样跑步的。
参考资料:
https://eureka-research.github.io/




微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
知圈专栏 | AI超越人类,完全可能— 智能的原理(下)许志远:人工智能对客观世界的理解将超越人类精致小巧的沙漠玫瑰盆景时间的湾 1chatGPT之父预言2030年前出现AGI,GPT-10智慧将超越全人类总和!大模型+agent专场:LLM与Agent的最新进展 | 第16届中国R会议暨2023X-AGI大会基模型12项性能超越GPT-4,商汤语言大模型就等你来用chat gpt 怎么上不去了? 彻底罢工了首批AI大模型获批上线,BATH在列;华为Mate 60开售即火,接入盘古大模型;AI操控无人机能力超越人类冠军丨AI周报有了GPT-4之后,机器人把转笔、盘核桃都学会了快消外企社招 | L’ORÉAL社招岗位上新,六险二金,居家办公,内购福利,女性友好,员工持股用GPT-4训练机器人!英伟达最新工作Eureka:转笔转到离谱!OpenAI:LLM能感知自己在被测试,为了通过会隐藏信息欺骗人类|附应对措施0.2美元微调就能让ChatGPT彻底破防!普林斯顿、斯坦福发布LLM风险预警:普通用户微调也影响LLM安全性清华微软「LLM+推理智能体」超越GPT-4!攻克数理难题,斩获开源界MATH最佳成绩量子纠缠成像惊现太极图 网友:果然科学的尽头是玄学AI时代,标准化工作交给机器,创意类工作留给人类?红色日记 9.11-20阿里云发布通义千问 2.0,性能超 GPT-3.5,加速追赶 GPT-4 | 新闻碾压GPT4,超越人类?谷歌Gemini 6分钟互动视频来了DeepMind大模型登Science:1分钟预测10天天气数据,90%指标超越人类最强模型我特别鄙视(taoyan)那些落井下石的人AI研发出最强抗生素,超越人类!陈丹琦团队新作:LLM-Shearing《脑机革命》作者:机器永远无法超越人类大脑讯飞星火:整体超越ChatGPT,医疗超越GPT4!一手实测在此宇宙尽头是「计算」!AI大佬Wolfram最新演讲:LLM自主在计算空间探索,奇点降临就是现在吃辣吃进急诊参数量仅为1/700,性能超越GPT-3.5!CMU+清华开源Prompt2Model框架悲剧! 27岁华裔美女设计师家中遇害 疑似家暴凶杀! 与男友合租 社区震惊!全新注意力算法PagedAttention:LLM吞吐量提高2-4倍,模型越大效果越好谷歌:LLM找不到推理错误,但能纠正它独家采访WizardLM团队,详解WizardCoder/Math超越GPT4/ChatGPT的RLEIF算法定了!广深发布法律人才新政:LLM/JD直接领25w!Nature:超越ChatGPT,思维更像人类的人工智能诞生,具备了人类举一反三的能力27岁美国华裔美女设计师家中遇害 疑似家暴凶杀! 与男友合租 社区震惊!GPT turbo 看了没?!这真是大批失业人员在路上。Google语言模型反击战!部分性能超越ChatGPT!
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。