Redian新闻
>
MIT科学家最新研究表明:大脑可能会像某些计算机模型一样理解世界

MIT科学家最新研究表明:大脑可能会像某些计算机模型一样理解世界

公众号新闻


为了穿越这个世界,我们的大脑必须对我们周围的物理世界产生直观的理解,然后我们用它来解释进入大脑的感官信息。


大脑如何发展这种直觉理解?许多科学家认为,它可能使用类似于所谓的“自我监督学习”的过程。这种类型的机器学习最初是为了创建更有效的计算机视觉模型而开发的,它允许计算模型仅根据视觉场景之间的相似性和差异来了解视觉场景,而无需标签或其他信息。

麻省理工学院 K. Lisa Yang 综合计算神经科学 (ICoN) 中心的研究人员进行的两项研究提供了支持这一假设的新证据。研究人员发现,当他们使用特定类型的自我监督学习来训练神经网络模型时,所得模型生成的活动模式与执行与模型相同任务的动物大脑中看到的活动模式非常相似 。

研究人员表示,研究结果表明,这些模型能够学习物理世界的表征,从而准确预测物理世界将发生的事情,并且哺乳动物的大脑可能正在使用相同的策略。

ICoN 中心的博士后 Aran Nayebi 表示:“我们工作的主题是,旨在帮助制造更好的机器人的人工智能最终也成为一个更好地理解大脑的框架。” “我们还不能说它是否是整个大脑,但跨越尺度和不同的大脑区域,我们的结果似乎暗示了一种组织原则。”

Nayebi 是其中一项研究的主要作者,与前麻省理工学院博士后 Rishi Rajalingham(现供职于 Meta Reality Labs)以及高级作者 Mehrdad Jazayeri 共同撰写,Mehrdad Jazayeri 是脑与认知科学副教授、麦戈文研究所成员。脑研究;罗伯特·杨(Robert Yang)是脑与认知科学助理教授,也是麦戈文研究所的准会员。

ICoN 中心主任、脑与认知科学教授、麦戈文研究所准会员 Ila Fiete 是另一项研究的资深作者,该研究由麻省理工学院研究生 Mikail Khona 和Rylan Schaeffer,麻省理工学院前高级研究员。

这两项研究将于 12 月在2023 年神经信息处理系统(NeurIPS) 会议上发表。


模拟物理世界

早期的计算机视觉模型主要依赖于监督学习。使用这种方法,模型被训练来对图像进行分类,每个图像都标有名称(猫、汽车等)。生成的模型运行良好,但这种类型的训练需要大量人工标记的数据。

为了创建更有效的替代方案,近年来,研究人员转向通过对比自我监督学习技术构建的模型。这种类型的学习允许算法学习根据对象之间的相似程度对对象进行分类,而无需提供外部标签。

“这是一种非常强大的方法,因为你现在可以利用非常大的现代数据集,尤其是视频,并真正释放它们的潜力,”纳耶比说。“你现在看到的许多现代人工智能,尤其是过去几年的 ChatGPT 和 GPT-4,都是在大规模数据集上训练自我监督目标函数以获得非常灵活的表示的结果。”

这些类型的模型也称为神经网络,由数千或数百万个相互连接的处理单元组成。每个节点与网络中的其他节点都有不同强度的连接。当网络分析大量数据时,这些连接的强度会随着网络学习执行所需的任务而发生变化。

当模型执行特定任务时,可以测量网络内不同单元的活动模式。每个单元的活动都可以表示为一种放电模式,类似于大脑中神经元的放电模式。纳耶比和其他人之前的研究表明,自我监督的视觉模型会产生与哺乳动物大脑视觉处理系统类似的活动。


在这两项新的 NeurIPS 研究中,研究人员着手探索其他认知功能的自我监督计算模型是否也可能显示出与哺乳动物大脑的相似之处。在纳耶比领导的这项研究中,研究人员训练了自我监督模型,通过数十万个描述日常场景的自然视频来预测环境的未来状态。

“在过去十年左右的时间里,在认知神经科学中构建神经网络模型的主要方法是在个体认知任务上训练这些网络。但以这种方式训练的模型很少能推广到其他任务,”杨说。“在这里,我们测试是否可以通过首先使用自我监督学习对自然数据进行训练,然后在实验室环境中进行评估来构建认知某些方面的模型。”

模型经过训练后,研究人员将其推广到一项他们称之为“Mental-Pong”的任务。这类似于视频游戏 Pong,玩家移动桨来击打穿过屏幕的球。在 Mental-Pong 版本中,球在击中球拍之前不久就会消失,因此玩家必须估计其轨迹才能击球。

研究人员发现,该模型能够以类似于哺乳动物大脑神经元的精确度跟踪隐藏球的轨迹,拉贾林厄姆和贾扎耶里之前的一项研究表明,模拟其轨迹——一种被称为“心理”的认知现象。模拟。” 此外,模型中看到的神经激活模式与动物玩游戏时大脑中看到的神经激活模式相似,特别是大脑中称为背内侧额叶皮层的部分。研究人员表示,没有任何其他类型的计算模型能够与生物数据如此紧密地匹配。

“机器学习社区为创造人工智能做出了许多努力,”贾扎耶里说。“这些模型与神经生物学的相关性取决于它们额外捕获大脑内部运作的能力。阿兰的模型预测神经数据这一事实非常重要,因为它表明我们可能越来越接近构建模拟自然智能的人工系统”。

环游世界

由科纳、谢弗和菲特领导的这项研究重点关注一种称为网格细胞的特殊神经元。这些位于内嗅皮层的细胞与位于海马体的位置细胞一起帮助动物导航。

当动物位于特定位置时,位置细胞就会激发,而网格细胞仅当动物位于三角形晶格的顶点之一时才会激发。网格单元组创建不同大小的重叠网格,这使得它们能够使用相对较少数量的单元对大量位置进行编码。

在最近的研究中,研究人员训练了监督神经网络来模拟网格细胞功能,根据动物的起点和速度预测其下一个位置,这一任务称为路径整合。然而,这些模型取决于始终获取有关绝对空间的特权信息,而这些信息是动物所没有的。

受到空间多周期网格单元代码的惊人编码特性的启发,麻省理工学院团队训练了一个对比自监督模型,以执行相同的路径积分任务并在此过程中有效地表示空间。对于训练数据,他们使用了速度输入序列。该模型学会了根据位置是否相似或不同来区分位置——附近的位置生成相似的代码,但更远的位置生成更多不同的代码。

“这类似于图像训练模型,如果两张图像都是猫头,它们的代码应该相似,但如果一张是猫头,一张是卡车,那么你希望它们的代码相互排斥,”Khona说。“我们采用同样的想法,但将其应用于空间轨迹。”

模型训练完成后,研究人员发现模型内节点的激活模式形成了几种不同周期的网格图案,与大脑中网格细胞形成的网格图案非常相似。

“这项工作让我兴奋的是,它将有关网格单元代码的引人注目的信息论特性的数学工作与路径积分的计算联系起来,”菲特说。“虽然数学工作是分析性的——网格单元代码具有哪些属性?——但通过自监督学习和获得类似网格的调整来优化编码效率的方法是综合性的:它显示了哪些属性可能是必要且足以解释原因的大脑有网格细胞。”


The brain may learn about the world the same way some computational models do

by Anne Trafton , Massachusetts Institute of Technology

Credit: Pixabay/CC0 Public Domain

To make our way through the world, our brain must develop an intuitive understanding of the physical world around us, which we then use to interpret sensory information coming into the brain.


How does the brain develop that intuitive understanding? Many scientists believe that it may use a process similar to what's known as "self-supervised learning." This type of machine learning, originally developed as a way to create more efficient models for computer vision, allows computational models to learn about visual scenes based solely on the similarities and differences between them, with no labels or other information.
A pair of studies from researchers at the K. Lisa Yang Integrative Computational Neuroscience (ICoN) Center at MIT offers new evidence supporting this hypothesis. The researchers found that when they trained models known as neural networks using a particular type of self-supervised learning, the resulting models generated activity patterns very similar to those seen in the brains of animals that were performing the same tasks as the models.
The findings suggest that these models are able to learn representations of the physical world that they can use to make accurate predictions about what will happen in that world, and that the mammalian brain may be using the same strategy, the researchers say.
"The theme of our work is that AI designed to help build better robots ends up also being a framework to better understand the brain more generally," says Aran Nayebi, a postdoc in the ICoN Center. "We can't say if it's the whole brain yet, but across scales and disparate brain areas, our results seem to be suggestive of an organizing principle."
Nayebi is the lead author of one of the studies, co-authored with Rishi Rajalingham, a former MIT postdoc now at Meta Reality Labs, and senior authors Mehrdad Jazayeri, an associate professor of brain and cognitive sciences and a member of the McGovern Institute for Brain Research; and Robert Yang, an assistant professor of brain and cognitive sciences and an associate member of the McGovern Institute.
Ila Fiete, director of the ICoN Center, a professor of brain and cognitive sciences, and an associate member of the McGovern Institute, is the senior author of the other study, which was co-led by Mikail Khona, an MIT graduate student, and Rylan Schaeffer, a former senior research associate at MIT.
Both studies will be presented at the 2023 Conference on Neural Information Processing Systems (NeurIPS) in December.

Modeling the physical world

Early models of computer vision mainly relied on supervised learning. Using this approach, models are trained to classify images that are each labeled with a name—cat, car, etc. The resulting models work well, but this type of training requires a great deal of human-labeled data.
To create a more efficient alternative, in recent years researchers have turned to models built through a technique known as contrastive self-supervised learning. This type of learning allows an algorithm to learn to classify objects based on how similar they are to each other, with no external labels provided.
"This is a very powerful method because you can now leverage very large modern data sets, especially videos, and really unlock their potential," Nayebi says. "A lot of the modern AI that you see now, especially in the last couple years with ChatGPT and GPT-4, is a result of training a self-supervised objective function on a large-scale dataset to obtain a very flexible representation."
These types of models, also called neural networks, consist of thousands or millions of processing units connected to each other. Each node has connections of varying strengths to other nodes in the network. As the network analyzes huge amounts of data, the strengths of those connections change as the network learns to perform the desired task.
As the model performs a particular task, the activity patterns of different units within the network can be measured. Each unit's activity can be represented as a firing pattern, similar to the firing patterns of neurons in the brain. Previous work from Nayebi and others has shown that self-supervised models of vision generate activity similar to that seen in the visual processing system of mammalian brains.


Credit: Massachusetts Institute of Technology
In both of the new NeurIPS studies, the researchers set out to explore whether self-supervised computational models of other cognitive functions might also show similarities to the mammalian brain. In the study led by Nayebi, the researchers trained self-supervised models to predict the future state of their environment across hundreds of thousands of naturalistic videos depicting everyday scenarios.
"For the last decade or so, the dominant method to build neural network models in cognitive neuroscience is to train these networks on individual cognitive tasks. But models trained this way rarely generalize to other tasks," Yang says. "Here we test whether we can build models for some aspect of cognition by first training on naturalistic data using self-supervised learning, then evaluating in lab settings."
Once the model was trained, the researchers had it generalize to a task they call "Mental-Pong." This is similar to the video game Pong, where a player moves a paddle to hit a ball traveling across the screen. In the Mental-Pong version, the ball disappears shortly before hitting the paddle, so the player has to estimate its trajectory in order to hit the ball.
The researchers found that the model was able to track the hidden ball's trajectory with accuracy similar to that of neurons in the mammalian brain, which had been shown in a previous study by Rajalingham and Jazayeri to simulate its trajectory—a cognitive phenomenon known as "mental simulation." Furthermore, the neural activation patterns seen within the model were similar to those seen in the brains of animals as they played the game—specifically, in a part of the brain called the dorsomedial frontal cortex. No other class of computational model has been able to match the biological data as closely as this one, the researchers say.
"There are many efforts in the machine learning community to create artificial intelligence," Jazayeri says. "The relevance of these models to neurobiology hinges on their ability to additionally capture the inner workings of the brain. The fact that Aran's model predicts neural data is really important as it suggests that we may be getting closer to building artificial systems that emulate natural intelligence."

Navigating the world

The study led by Khona, Schaeffer, and Fiete focused on a type of specialized neurons known as grid cells. These cells, located in the entorhinal cortex, help animals to navigate, working together with place cells located in the hippocampus.
While place cells fire whenever an animal is in a specific location, grid cells fire only when the animal is at one of the vertices of a triangular lattice. Groups of grid cells create overlapping lattices of different sizes, which allows them to encode a large number of positions using a relatively small number of cells.
In recent studies, researchers have trained supervised neural networks to mimic grid cell function by predicting an animal's next location based on its starting point and velocity, a task known as path integration. However, these models hinged on access to privileged information about absolute space at all times—information that the animal does not have.
Inspired by the striking coding properties of the multiperiodic grid-cell code for space, the MIT team trained a contrastive self-supervised model to both perform this same path integration task and represent space efficiently while doing so. For the training data, they used sequences of velocity inputs. The model learned to distinguish positions based on whether they were similar or different—nearby positions generated similar codes, but further positions generated more different codes.
"It's similar to training models on images, where if two images are both heads of cats, their codes should be similar, but if one is the head of a cat and one is a truck, then you want their codes to repel," Khona says. "We're taking that same idea but applying it to spatial trajectories."
Once the model was trained, the researchers found that the activation patterns of the nodes within the modelformed several lattice patterns with different periods, very similar to those formed by grid cells in the brain.
"What excites me about this work is that it makes connections between mathematical work on the striking information-theoretic properties of the grid cell code and the computation of path integration," Fiete says. "While the mathematical work was analytic—what properties does the grid cell code possess?—the approach of optimizing coding efficiency through self-supervised learning and obtaining grid-like tuning is synthetic: It shows what properties might be necessary and sufficient to explain why the brain has grid cells."



https://techxplore.com/news/2023-10-brain-world.html

来源:科技世代千高原

作者:安妮·特拉夫顿, 麻省理工学院


版权声明:部分文章在推送时未能与原作者取得联系。若涉及版权问题,敬请原作者联系我们。联系方式:[email protected]

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
GPT-4:我写的代码你敢用吗?研究表明其API误用率超过62%基辛格是这样理解中国的这个年龄,大脑可能发生“断崖式”衰老,重则影响寿命!零度可乐“又出事了”?最新研究表明,喝可乐可能导致记忆力受损!OpenAI科学家最新大语言模型演讲火了,洞见LLM成功的关键【健康】研究表明,戒断手机对健康没有显著积极影响Nat Med | 新研究表明研究人员在治愈HIV感染方面又迈出了一大步Sci Rep | 大规模研究表明前庭功能的丧失或会增加痴呆症风险吴恩达力赞!哈佛、MIT学者用下棋证明:大型语言模型确实「理解」了世界实习招聘 | Intel -「研究生实习-电气工程、计算机科学、计算机工程」招聘《秋窗风雨夕》&《习惯悲伤》有意思周报|研究表明:低质量租房会让人衰老的更快;男子为了逃单,在高级餐厅假装了20次心脏病发研究表明,戒断手机对健康没有显著积极影响红色日记 3.21-31什么是 Vlan、三层交换机、网关与DNS?这样理解省时又省力…三皇五帝女性痛经有望治疗!最新研究表明靶向梭杆菌治疗子宫内膜异位症,缓解痛经还在受长新冠困扰?最新研究表明这种氨基酸可显著缓解新冠后遗症!MIT惊人证明:大语言模型就是「世界模型」?吴恩达观点再被证实,LLM竟能理解空间和时间最新研究表明:澳洲酒后驾驶现象严重!超过十分之一司机承认曾经酒驾最新研究表明,SGLT-2i有助于降低急性心衰合并AKI患者的死亡风险!怎样理解中国的逻辑重置研究表明,晚婚晚育有这7个好处——有研究表明,你的老板可能是个精神病?难怪他总是发火....龙芯3C5000工业计算机模块上市,16核处理器+板载32GB内存跌入满是鲇鱼的池塘,后果可能会像这只羚羊西雅图街头惊现警匪片,持枪抢劫犯欲夺警察武器被捕;Target因盗窃猖獗而关闭两家西雅图门店;有研究表明西雅图将面临更大地震风险斑叶蝴蝶兰,清新靓丽硬核观察 #1144 量子计算机正在重演真空管计算机的历史吗?无需节食!Nutrients研究表明减少蛋白质摄入即可对抗肥胖,轻松减重20斤!5150 血壮山河之武汉会战 崩溃 10禁忌话题不再禁忌:研究表明优化阴道菌群可改善女性健康做决策想要平衡直觉和理性?你的大脑可能已经替你决定了简单地了解一些计算机基础知识贪吃真“伤脑子”!英国伯明翰大学最新研究表明高脂肪会降低脑功能,并增加精神压力!
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。