Redian新闻
>
美团二面:如何在10亿级别用户中检查用户名是否存在?

美团二面:如何在10亿级别用户中检查用户名是否存在?

公众号新闻

👉 这是一个或许对你有用的社群

🐱 一对一交流/面试小册/简历优化/求职解惑,欢迎加入芋道快速开发平台知识星球。下面是星球提供的部分资料: 

👉这是一个或许对你有用的开源项目

国产 Star 破 10w+ 的开源项目,前端包括管理后台 + 微信小程序,后端支持单体和微服务架构。

功能涵盖 RBAC 权限、SaaS 多租户、数据权限、商城、支付、工作流、大屏报表、微信公众号等等功能:

  • Boot 地址:https://gitee.com/zhijiantianya/ruoyi-vue-pro
  • Cloud 地址:https://gitee.com/zhijiantianya/yudao-cloud
  • 视频教程:https://doc.iocoder.cn

来源:JAVA旭阳


不知道大家有没有留意过,在使用一些app注册的时候,提示你用户名已经被占用了,需要更换一个,这是如何实现的呢?你可能想这不是很简单吗,去数据库里查一下有没有不就行了吗,那么假如用户数量很多,达到数亿级别呢,这又该如何是好?

数据库方案

第一种方案就是查数据库的方案,大家都能够想到,代码如下:

public class UsernameUniquenessChecker {
    private static final String DB_URL = "jdbc:mysql://localhost:3306/your_database";
    private static final String DB_USER = "your_username";
    private static final String DB_PASSWORD = "your_password";

    public static boolean isUsernameUnique(String username) {
        try (Connection conn = DriverManager.getConnection(DB_URL, DB_USER, DB_PASSWORD)) {
            String sql = "SELECT COUNT(*) FROM users WHERE username = ?";
            try (PreparedStatement stmt = conn.prepareStatement(sql)) {
                stmt.setString(1, username);
                try (ResultSet rs = stmt.executeQuery()) {
                    if (rs.next()) {
                        int count = rs.getInt(1);
                        return count == 0// If count is 0, username is unique
                    }
                }
            }
        } catch (SQLException e) {
            e.printStackTrace();
        }
        return false// In case of an error, consider the username as non-unique
    }

    public static void main(String[] args) {
        String desiredUsername = "new_user";
        boolean isUnique = isUsernameUnique(desiredUsername);
        if (isUnique) {
            System.out.println("Username '" + desiredUsername + "' is unique. Proceed with registration.");
        } else {
            System.out.println("Username '" + desiredUsername + "' is already in use. Choose a different one.");
        }
    }
}

这种方法会带来如下问题:

  1. 性能问题,延迟高 如果数据量很大,查询速度慢。另外,数据库查询涉及应用程序服务器和数据库服务器之间的网络通信。建立连接、发送查询和接收响应所需的时间也会导致延迟。
  2. 数据库负载过高。频繁执行 SELECT 查询来检查用户名唯一性,每个查询需要数据库资源,包括CPU和I/O。
  3. 可扩展性差。数据库对并发连接和资源有限制。如果注册率继续增长,数据库服务器可能难以处理数量增加的传入请求。垂直扩展数据库(向单个服务器添加更多资源)可能成本高昂并且可能有限制。

基于 Spring Boot + MyBatis Plus + Vue & Element 实现的后台管理系统 + 用户小程序,支持 RBAC 动态权限、多租户、数据权限、工作流、三方登录、支付、短信、商城等功能

  • 项目地址:https://github.com/YunaiV/ruoyi-vue-pro
  • 视频教程:https://doc.iocoder.cn/video/

缓存方案

为了解决数据库调用用户名唯一性检查的性能问题,引入了高效的Redis缓存。

public class UsernameCache {

    private static final String REDIS_HOST = "localhost";
    private static final int REDIS_PORT = 6379
    private static final int CACHE_EXPIRATION_SECONDS = 3600

    private static JedisPool jedisPool;

    // Initialize the Redis connection pool
    static {
        JedisPoolConfig poolConfig = new JedisPoolConfig();
        jedisPool = new JedisPool(poolConfig, REDIS_HOST, REDIS_PORT);
    }

    // Method to check if a username is unique using the Redis cache
    public static boolean isUsernameUnique(String username) {
        try (Jedis jedis = jedisPool.getResource()) {
            // Check if the username exists in the Redis cache
            if (jedis.sismember("usernames", username)) {
                return false// Username is not unique
            }
        } catch (Exception e) {
            e.printStackTrace();
            // Handle exceptions or fallback to database query if Redis is unavailable
        }
        return true// Username is unique (not found in cache)
    }

    // Method to add a username to the Redis cache
    public static void addToCache(String username) {
        try (Jedis jedis = jedisPool.getResource()) {
            jedis.sadd("usernames", username); // Add the username to the cache set
            jedis.expire("usernames", CACHE_EXPIRATION_SECONDS); // Set expiration time for the cache
        } catch (Exception e) {
            e.printStackTrace();
            // Handle exceptions if Redis cache update fails
        }
    }

    // Cleanup and close the Redis connection pool
    public static void close() {
        jedisPool.close();
    }
}

这个方案最大的问题就是内存占用过大,假如每个用户名需要大约 20 字节的内存。你想要存储10亿个用户名的话,就需要20G的内存。

总内存 = 每条记录的内存使用量 * 记录数 = 20 字节/记录 * 1,000,000,000 条记录 = 20,000,000,000 字节 = 20,000,000 KB = 20,000 MB = 20 GB

基于 Spring Cloud Alibaba + Gateway + Nacos + RocketMQ + Vue & Element 实现的后台管理系统 + 用户小程序,支持 RBAC 动态权限、多租户、数据权限、工作流、三方登录、支付、短信、商城等功能

  • 项目地址:https://github.com/YunaiV/yudao-cloud
  • 视频教程:https://doc.iocoder.cn/video/

布隆过滤器方案

直接缓存判断内存占用过大,有没有什么更好的办法呢?布隆过滤器就是很好的一个选择。

那究竟什么布隆过滤器呢?

布隆过滤器Bloom Filter)是一种数据结构 ,用于快速检查一个元素是否存在于一个大型数据集中,通常用于在某些情况下快速过滤掉不可能存在的元素,以减少后续更昂贵的查询操作。布隆过滤器的主要优点是它可以提供快速的查找和插入操作,并且在内存占用方面非常高效。

具体的实现原理和数据结构如下图所示:

布隆过滤器的核心思想是使用一个位数组(bit array)和一组哈希函数。

  • 位数组(Bit Array) :布隆过滤器使用一个包含大量位的数组,通常初始化为全0。每个位可以存储两个值,通常是0或1。这些位被用来表示元素的存在或可能的存在。
  • 哈希函数(Hash Functions) :布隆过滤器使用多个哈希函数,每个哈希函数可以将输入元素映射到位数组的一个或多个位置。这些哈希函数必须是独立且具有均匀分布特性。

那么具体是怎么做的呢?

  • 添加元素 :如上图所示,当将字符串“xuyang”,“alvin”插入布隆过滤器时,通过多个哈希函数将元素映射到位数组的多个位置,然后将这些位置的位设置为1。
  • 查询元素 :当要检查一个元素是否存在于布隆过滤器中时,通过相同的哈希函数将元素映射到位数组的相应位置,然后检查这些位置的位是否都为1。如果有任何一个位为0,那么可以确定元素不存在于数据集中。但如果所有位都是1,元素可能存在于数据集中,但也可能是误判。

本身redis支持布隆过滤器的数据结构,我们用代码简单实现了解一下:

import redis.clients.jedis.Jedis;
import redis.clients.jedis.JedisPool;
import redis.clients.jedis.JedisPoolConfig;

public class BloomFilterExample {
    public static void main(String[] args) {
        JedisPoolConfig poolConfig = new JedisPoolConfig();
        JedisPool jedisPool = new JedisPool(poolConfig, "localhost"6379);

        try (Jedis jedis = jedisPool.getResource()) {
            // 创建一个名为 "usernameFilter" 的布隆过滤器,需要指定预计的元素数量和期望的误差率
            jedis.bfCreate("usernameFilter"100000000.01);
            
            // 将用户名添加到布隆过滤器
            jedis.bfAdd("usernameFilter""alvin");
            
            // 检查用户名是否已经存在
            boolean exists = jedis.bfExists("usernameFilter""alvin");
            System.out.println("Username exists: " + exists);
        }
    }
}

在上述示例中,我们首先创建一个名为 "usernameFilter" 的布隆过滤器,然后使用 bfAdd 将用户名添加到布隆过滤器中。最后,使用 bfExists 检查用户名是否已经存在。

优点:

  • 节约内存空间 ,相比使用哈希表等数据结构,布隆过滤器通常需要更少的内存空间,因为它不存储实际元素,而只存储元素的哈希值。如果以 0.001 误差率存储 10 亿条记录,只需要 1.67 GB 内存,对比原来的20G,大大的减少了。
  • 高效的查找 , 布隆过滤器可以在常数时间内(O(1))快速查找一个元素是否存在于集合中,无需遍历整个集合。

缺点:

  • 误判率存在 :布隆过滤器在判断元素是否存在时,有一定的误判率。这意味着在某些情况下,它可能会错误地报告元素存在,但不会错误地报告元素不存在。
  • 不能删除元素 :布隆过滤器通常不支持从集合中删除元素,因为删除一个元素会影响其他元素的哈希值,增加了误判率。

总结

Redis 布隆过滤器的方案为大数据量下唯一性验证提供了一种基于内存的高效解决方案,它需要在内存消耗和错误率之间取得一个平衡点。当然布隆过滤器还有更多应用场景,比如防止缓存穿透、防止恶意访问等。


欢迎加入我的知识星球,全面提升技术能力。

👉 加入方式,长按”或“扫描”下方二维码噢

星球的内容包括:项目实战、面试招聘、源码解析、学习路线。

文章有帮助的话,在看,转发吧。

谢谢支持哟 (*^__^*)

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
unique juxtapositions: Light and Shadow in Photography:这么蠢的节目,意义何在?《中国节日歌》&《千年等一回》AI当局下,产品经理未来何在?路怎么走?煤炭价格有望反弹,怀特黑文煤炭公司机会何在?阿里终面:10亿数据如何快速插入MySQL?瞭望|​古生物化石盗掘频发,原因何在?多地竞跑大模型赛道,政策差异何在?闪崩不断!"泡沫债"大跌冲击转债市场,原因何在?业内人士这样看少年马斯克的人生难题:宇宙从何而来?为何存在?6家GPU被曝漏洞,用户名密码被「像素级窃取」,N卡A卡I卡高通苹果ARM都没躲过沙特突然急转向,根源何在?国税局官员亲自告诉你:如何在美国开办企业?如何注意税务问题?GitHub 年度报告曝光:生成式 AI 项目暴涨 2 倍,个人贡献者激增 148%,从趋势看机遇何在?又是中秋黄金居然如此稳健,原因何在?撬动万亿级别市场的 AI 大模型,开发者如何借势乘风破浪?| 极客时间AI必然趋势下,产品经理未来何在?路怎么走?天才亚裔18岁谷歌高薪聘用却被一众大学拒绝,美国招生的“亚裔歧视”真实存在?京东二面:10w+订单每秒热点数据架构如何优化?家中检测盒是否还有效?专家教你这样检查!创业板IPO案例!发行人是否存在“快递空包”情形?妇科检查用的「窥阴器」,你真的了解吗?《前任4》:80后该如何存在?3年要开万家自营药店!京东健康的底气何在?斯里兰卡|总统质疑:针对人权问题,公平何在?!加沙一套,斯里兰卡另一套!摩拜可以退押金了,那些共享单车的创始人们今何在?吃苦童子功字是打門錘Liz Hurley & Hugh grant照相GitHub年度报告曝光:生成式AI项目暴涨2倍,个人贡献者激增148%,从趋势看机遇何在?【金融行业】建设“金融强国”重点何在?字节二面:10Wqps会员系统,如何设计?“蔚然成风”的合规时代:机遇与未来何在?男女收入差距为何始终存在?诺贝尔经济学奖得主克劳迪娅·戈尔丁揭示了答案连续多日千亿级别逆回购,央行加码投放什么信号?
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。