Redian新闻
>
以前所未有的原子数量进行量子力学模拟,机器学习发现新的高压固体氢

以前所未有的原子数量进行量子力学模拟,机器学习发现新的高压固体氢

公众号新闻

ScienceAI 设为星标

第一时间掌握

新鲜的 AI for Science 资讯



编辑 | 绿萝

氢是宇宙中最为丰富的元素。从外太空到恒星,再到地球上的许多物质,氢无处不在。

氢是元素周期表中的第一个元素,它的单个原子也是所有元素中最简单的,只有一个质子和一个电子。

对于伊利诺伊大学厄巴纳-香槟分校(UIUC)的物理学教授 David Ceperley 来说,这使得氢成为构建和测试物质理论的自然起点。他使用计算机模拟来研究氢原子如何相互作用和结合以形成固体、液体和气体。然而,对这些现象的真正理解需要量子力学,而量子力学模拟的成本是昂贵的。

为了简化任务,Ceperley 和他的合作者开发了一种机器学习技术,可以用前所未有的原子数量进行量子力学模拟。

研究发现了一种新的高压固体氢,这是过去的理论和实验未发现的。

该研究以「Stable Solid Molecular Hydrogen above 900 K from a Machine-Learned Potential Trained with Diffusion Quantum Monte Carlo」为题,于 2023 年 2 月 17 日发布在《Phys. Rev. Lett.》上。

论文链接:https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.130.076102

「事实证明,机器学习教会了我们很多东西,」Ceperley 说。「我们在之前的模拟中看到了新行为的迹象,但我们不相信它们,因为我们只能容纳少量原子。有了我们的机器学习模型,我们可以充分利用最准确的方法,看看到底发生了什么。」

探测高压氢相图的实验方法有限。鉴于实验的困难,精确的模拟是必要的,以告知和补充实验工作。高压氢的模拟需要准确的方法来描述电子基态 Born-Oppenheimer (BO) 势能面 (PES) 和包含超出谐波近似(harmonic approximation)的核量子效应。但使用第一性原理方法探索大范围的压力和温度非常耗时。

近年来,机器学习原子间势已成为一种很有前途的工具,在准确性和效率之间达到平衡,进行准确且低成本的计算,从而解决第一原理模拟的时间和空间限制。

ML 方法已应用于致密氢研究。然而,关于解离、熔化和通过各种模拟方法获得的临界点,存在一些相互矛盾的理论结果。

氢原子形成一个量子力学系统,但即使在计算机上也很难捕捉到它们的完整量子行为。像量子蒙特卡洛(QMC)这样的最先进技术可以模拟数百个原子,而理解大规模相行为需要长时间模拟数千个原子。

为了使 QMC 更具通用性,研究人员开发了一种机器学习模型,该模型经过 QMC 模拟训练,能够容纳比 QMC 本身更多的原子。然后,使用该模型来研究在非常高的压力下形成的氢固相如何熔化。

在这项研究中,研究人员使用与 DMC-BO-PES 近似的量子质子,在 50 到 220 GPa 的压力下,对分子氢进行大规模模拟,研究高压分子氢的相图。

状态方程整体比较优秀。实验确定结构为 HCP,但六角对称性在 150 GPa 以上被破坏。在模拟和实验中,c/a 比随着压力的增加而降低。当 c/a 比偏离封闭堆积极限时,分子取向会出现各向异性。

图示:(a)层 1(绿色)和层 2(橙色)的定向 Fmmm-4 结构。(来源:论文)

研究发现 400 K 和 120 GPa 以上的主要结构是各向同性 Fmmm-4,每个晶胞有 2 个分子,没有优先取向。

在 HCP 结构中,第二层的分子中心位于第一层三个分子中心形成的等边三角形的中心之上,而在 Fmmm-4 中,第二层的分子中心位于该三角形的边缘之上。 

对于 T ≤ 400 K,分子在基面上定向。当 T < 200 K,结构为 C2/c-24,这也是具有定向分子的分子中心的 HCP 晶格;有 4 个不同的层,每个晶胞共有 12 个分子。

除了 HCP 和 C2/c-24 相外,还发现了两个新的稳定相,它们的分子中心都在 Fmmm-4 结构中,通过分子取向随温度的转变而分开。

高温各向同性 Fmmm-4 相有一条重入熔线(reentrant melting line,其最大熔点比之前估计的温度更高(150 GPa 时为 1450 K),并在 1200 K 和 200 GPa 左右穿过液-液相变线(LLPT)。

图示:致密氢的相图。(来源:论文)

为了验证结果,研究人员使用密度泛函理论的数据训练了他们的机器学习模型。发现简化的机器学习模型完美地再现了标准理论的结果。研究人员得出结论,大规模机器学习辅助 QMC 模拟可以解释影响并做出标准技术无法做出的预测。

氢的高压测量很难进行,因此实验结果有限。新的预测激发了一些小组重新审视这个问题,更仔细地探索氢在极端条件下的行为。

Ceperley 指出,了解高温高压下的氢将增强我们对木星和土星这两种主要由氢构成的气态行星的了解。

论文共同作者 Scott Jensen 补充说,氢的「简单性」使得研究这种物质很重要。「我们想了解一切,所以我们应该从我们可以攻击的系统开始,」他说。「氢很简单,所以,值得我们去研究。」

参考内容:https://phys.org/news/2023-04-simulations-machine-phase-solid-hydrogen.html

人工智能 × [ 生物 神经科学 数学 物理 化学 材料 ]

「ScienceAI」关注人工智能与其他前沿技术及基础科学的交叉研究与融合发展

欢迎注标星,并点击右下角点赞在看

点击读原文,加入专业从业者社区,以获得更多交流合作机会及服务。

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
费城因拍电影封路通知|总统拜登周末现身费城|特朗普自首并被逮捕,创下美国历史上前所未有的先例拜疯狂的无良票代所赐,我们宝贵的回国机票正在遭遇前所未有的威胁东南亚,前所未有的机遇当你感觉前所未有的阻力时你该怎么办?没有邓小平右派慢慢长夜无绝期中产阶级退休的男人如何面对疾病“中国正以前所未有的速度进行部署”为了让你失业,AI们前所未有地团结一致“遇事不决,量子力学”明知无用,为何人们依然沉迷巫术?国殇日长周末:交通将前所未有忙碌!出行需谨慎!纽约是美国蚊子最猖獗的城市之一中国美院院长: 一场前所未有的变革正在中国发生, 必须重振社会主义文化领导力Npj Comput. Mater.: 原子尺度成像—机器学习的亚像素处理会议预告 | 首届机器学习与统计会议暨中国现场统计研究会机器学习分会成立大会宜居温哥华,荒谬前所未有:租住无窗户的储物间月租金800加元…真恶心啊!去韩国城买的外卖,喝汤喝一半竟然吃到老鼠!禁止摆摊首日! 法拉盛街道前所未有的通畅!华人摊贩抗议:给我们谋生的机会前所未有超大规模!草间弥生纽约特展,这次免费看!【不妙】前所未有!多伦多公寓投资者过半亏钱!月亏高达$100090后高材生过穷酸生活上瘾:不工作、不买房,1800块撑一个月,前所未有的满足230万吨!研究:全球海洋塑料污染达到“前所未有的水平”张维迎:经济面临前所未有的危机|要让企业家能掌握自己命运奥密克戎新变体“大角星”正在全美散布!出现前所未有症状,或致眼睛发红发痒寓意不祥花,无辜任怨嗟《Python机器学习》畅销书作者又出新书了,全方位扩展你的机器学习知识Nature:有史以来最大的人类正常乳腺细胞图谱为乳腺生物学带来了前所未有的新见解人间再无刘三姐【谝闲分享】:再写一篇有关我家老三。求收购!加拿大房地产经纪公司撑不下去了:房市波动前所未有!谁能想到,这一届00后毕业生,遭遇了前所未有的地狱开局……东南亚,前所未有的机遇!为了骂她,中日韩网友前所未有的团结一致英国25亿英镑进行量子科技计划!曼彻斯特4月1日起征收游客税,成英国首例!前所未有!匈牙利震怒如何得到一个原子的中子数系列直播|吕晓玲教授:数据科学视角下,机器学习当泡利遇上荣格:量子力学如何改变分析心理学?
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。