Redian新闻
>
决策的维度

决策的维度

财经


人的命运,是一连串决策与运气的叠加。

米塞斯给出了“行动人”的定义,在他看来,每个行动都是一次选择,行动者在替代手段中取此舍彼。

每个行动,犹如围棋的每个棋子,最终构成了完成的棋局,评价了一个人的此生。

决策,是面向未来分配资源。其中,充满了未知和风险。

本文构建了一个四维架构,用于帮助我们思考不确定情况下的“连续决策”。

换而言之,我打算为评价“行动人”的行动提供一个完整框架:

1、基于时间整体性的;

2、基于取舍空间整体性的;

3、基于资源整体性的;

4、基于行动人在过程中自我进化整体性的。

  • 在一个单边上涨的市场里,人们热烈追逐收益最大化;

  • 当市场开始调整或回归均值,未曾经历完整周期的人们对风险猝不及防。

在《人生复利训练营》第一期的进行过程中,我发现本文关于“决策维度”的描述,有助于理解概率起伏下的复利计算,从而实现在规避风险的前提下实现收益最大化。

决策的维度,是某种可视化的隐喻。其涉及到的计算大致是简单且严谨的,例如“胜率、赔率、期望值、下注比例、贝叶斯更新”等等。

我的构建照例是脚手架而非“理论”,供诸君踩踏以及拆除。

以围棋为例,棋盘是二维的,但高手往往有超越二维的“感觉”。

吴清源先生把“21世纪的围棋”称作“六合之棋”。所谓“六合”,在古文里是宇宙的意思,表示东西南北的四方和上下的天地。

东南西北,是二维的棋盘。而“上下”,则包括了棋的(且不止)“厚薄”,是第三维。

在吴清源看来,围棋的目标不是局限于边角,而是应该很好地保持全体的平衡,站在一个很高的角度去看待。

他认为:只有发挥出棋盘上所有棋子的效率那一手才是最佳的一手,那就是中和的意思。每一手必须是考虑全盘整体的平衡去下——这就是“六合之棋”。

可是,如何评估厚与薄呢?

棋手将着眼于全局和长期收益的行棋组合,称为“厚势”;将眼前和立即变现的行棋组合,称为“实利”。

AI下棋相比人类最厉害的地方,是形势判断。

形势判断里最难的,是对“厚薄”的判断。

棋子的厚薄,是一种垂直于棋盘之二维的第三维属性。

从投资的角度看,“升维”来自跨期决策中对时间这一要素的考虑,并通过资源配置适应性学习,实现最终收益的最大化。


前阵子,某资本大佬创造了“人类历史上最大的单日亏损”:

他的基金净资产峰值高达150亿美金,杠杆比例长期维持在3~4,所以总资产高达800亿美金。

因其三只重仓股都在最近有过单日暴跌30%以上,人们猜测仅在这三只股票上的亏损就达100亿美金,约是其净资产的2/3。

还有各种更糟糕结果的传闻......

都知道杠杆危险,为什么即使是“专业人士”也无法幸免呢?

我对该传闻的总结是:一个因为运气发达的人被运气报复了

由此,我更发现了一个秘密:

许多“赌徒”压根儿不懂基本的概率常识。

广义而言,人是一种好赌的动物。

一个人的诞生,就是中了“卵巢彩票”头奖的结果。

有一次,美国强力球彩票头奖高达15亿美金,其中奖率约为三亿分之一。

对比而言,人一生中遭受雷击的概率约为13500分之1,约为中彩票头奖的两万倍。

不那么精确的比方是,一个人中15亿美金的彩票头奖,相当于一辈子被雷劈了两次。

你我来到这个世界的中奖率,至少也是数亿分之一。

正如地球上的生命之于宇宙,也是一个超级彩票大奖。

人生有很多时刻,需要在未来充满不确定性的情况下做出选择。

这也似乎有点儿像“赌”。

所以,普通人学习一点儿原本发源自赌博的概率常识,也很必要。

本文将系统化地梳理一下“赌”的三个关键知识点:

1、胜率;2、赔率;3、下注。

即使是投资领域的不少专家,都在这三个简单的概念上犯晕。

进而,我搭建了一个“四维一原点”的模型,供高手批判。

文章开头,还是要强调以下几点(是非常重要的废话):

  1. 没有任何方法,可以帮助赌徒战胜现代赌场。

  2. 再厉害的公式,也无法挽救期望值为负的赌博游戏。

  3. 在股票市场上战胜指数,也是极其艰难的事情。

  4. 普通人更别去玩儿期货等连对手都不知道是谁的赌局。

  5. 即使是顶级聪明人,也别抢“运气”的功劳,否则会被“运气”报复。


先简单地描述一下三个关键概念:

一、胜率

胜率=成功的概率=成功的总次数/(成功的总次数+失败的总次数)

例如扔一个标准的硬币,你压正面,扔了100次,50次是正面,胜率就是50%。

假如玩儿扔骰子游戏,你压数字6,数学意义上的胜率是1/6。

二、赔率

赔率=获胜时的盈利/失败时的亏损

例如上面你扔骰子押数字6,若每次下注两块钱,赢了净赚十块钱,输了亏掉两块钱,那么赔率就是10/2=5。

再如你买了一只股票,预测其若上涨,幅度约为30%;若下跌,幅度约为-10%,那么赔率就是30%/10%=3。

这里容易混淆之处是,盈利的计算要扣除本金。

因为有些国家和地区的足球彩票的“赔率”包含了本金,例如说是一赔5,这"5"里包含了你的本金"一",所以赔率应该是"(5-1)=4"。

三、下注

下注是指根据过往信息和当前局面,对未来做出一个预测,并且据此投资总资金的比例。

所以,下注的单位应该是百分比,而不是金钱数量。

例如,你听闻有位超级厉害的大佬在某牛B项目上下注100个亿,于是打算抄作业,把账户里的300万全押上去。

可是,超级厉害大佬的资金总量高达1000个亿,而且还能源源不断地募集资金。

就算你真的要抄作业,也应该抄该大佬的下注比例,也就是100/1000=1/10,所以你应该押30万。

然而,仅仅知道这三个概念,只会让赌徒产生"我懂了"的错觉,导致刚学会狗刨的新手要去横渡长江的雄心。

大部分话题都停留在“胜率和赔率哪个更重要"这类定性讨论上,说来说去,全是计谋和道理。

即使是有些专家,也没有理解"胜率、赔率、下注"之间的数学联系,以至于对凯利公式关于"下注比例"的计算表示怀疑。

下面,我将给出一个直观的、量化的、整体的"胜率、赔率、下注"理解框架


这个整体框架包括四个维度,和一个原点:

  • 一维是胜率;

  • 二维是期望值;

  • 三维是根据胜率和赔率所决定的下注比例;

  • 四维是根据过往的下注结果和更新后的信息,重新调整"胜率、赔率和下注"。

  • 原点是人性。


一维:胜率

我用改编自《周期》里的一个比方来说。

一个罐子里面装着100个球,有些是黑球,有些是红球。一个人从罐子里拿出来一个球,你猜它会是什么颜色?

假如你对罐子里的黑红球分布一无所知,你怎么猜都没意义。

但是,如果你知道其中70个是红球,30个是黑球,这就会让你赢的概率大大超过输的概率。

你当然会猜随机拿出的球可能是红色,你的胜率是70%。

用图形来表示,如下,是个一维的线段:

这是一个长度为10的线段,其中70%的部分为红色,30%的部分为黑色。(请横过来看数字

这部分简单得出奇,但为了整个描述框架的完整性,请聪明的你耐心看下去。

(聪明人请来走个神儿:如果让你连续猜100次,并且你已经知道了70%是红球,30%是黑球,那么,你应该连续100次都猜是红球,还是70次猜是红球,30次猜是黑球?为什么?)

对胜率的把握程度,属于"概率权"的一种。

你可能会说,投资又不是猜罐子里的球,只有上帝才知道那只股票明天会涨会跌,这个胜率谁说了算?

没错,大多数"胜率",就是靠"蒙"的。

在"对赌"的场合,关键在与你比对手"蒙"得更准,就像两个人在森林里遇到狗熊,重点不是比狗熊跑得快,而是比另外一个人跑得快。

霍华德·马斯克对此总结道:

  • 要在这场对赌游戏中赢多、输少,你就必须在知识上有优势,你要比对手知道得更多。这正是卓越投资人的优势所在:卓越投资人对未来的趋势比一般投资人知道得更多。

  • 你即使知道概率,也无法"确定"知道未来具体会发生什么。你还是有30%的概率会输,并且不知道具体哪一次输,哪一次赢。

  • 对于投资这类"赌局",理论上你只要有50.1%的优势,并且形成下注的连续性,就有机会实现接近于百分之百的收益。

这里的关键是:

对未来趋势,你知道得比别人更多,即占有知识优势,就足以让你取得长期投资成功。

这就是所谓的洞见。

张磊早年敢满仓腾讯,下注京东等公司,都是因为他根据美国的"基础概率"和自身的"知识优势",比别人更早更准确地"蒙"对了这些公司的胜率。

他“偷”看了底牌。

胜率,是用概率来做决策依据,也就是某种量化思维的大局观。

然而,"追求做大概率正确的事情",这句话百分之百正确吗?

并非如此。

  • 就做事而言,也许是对的;

  • 就投资而言,还要看赔率。

例如,下注于夺冠概率最大的巴西队,你未必能够赚钱。


二维:期望值

假如一篇讲胜率和赔率的文章,绕来绕去都不提及"期望值",说明那篇文章的作者是个概率盲。

在本文的这个框架里,二维不是赔率,而是期望值

再回到上面那个猜红球黑球的案例:

你已经知道了70%是红球,并且已经选择了胜率高的红球。

这时,你的对手选了黑球。但他提了一个条件:

  • 假如你赢了,他赔你20%;

  • 假如他赢了,你赔他80%。

你要不要和他对赌呢?

用图形来表示,如下,是二维的矩形:

如上,纵坐标是胜率,横坐标是赔率。(以下略去%)

  • 你若获胜,收益是70✖️20,如上图的橙色面积;

  • 你若失败,损失是30✖️80,如上图的蓝色面积;

  • 期望值=预期收益➖预期损失=-1000,如上图的两个面积差。

所以,对方给出的赔率,会让你即使拥有70%的胜率,期望值也是负数,也不值得参与这个赌局。

反过来想,对手即使胜率较低,如果有好的赔率,还是可以有正的期望值。

所以,赔率必须结合胜率一起计算,才有意义。

去讨论胜率和赔率谁更重要,就像讨论左脚和右脚哪个更重要一样。

期望值的计算是通过面积,姑且称之为"二维"。

塔勒布曾经嘲讽索罗斯曾经的搭档罗杰斯连期望值都不懂。

当然,鸟不懂飞行原理也会飞。

但是,如果想要造一个飞行机器,最好懂点儿飞行原理。

最厉害的投资者,本质上是一台赚钱机器。所以既要有直觉,也要懂飞行原理。

为了实现这一点,让我们继续迈向三维世界。


三维:下注

如前所述,即使你有90%的获胜概率,而且赔率也极高,算下来期望值也非常有吸引力,但是在随机性的作用下,你也可能落入那10%的失败区间里。

俗称:“煮熟的鸭子飞了”。

现实中杀死一个人的钱包的,不是生猛的野鸭子,更多的是“煮熟的鸭子”。

说一个听起来很耳熟的故事吧:

你遇到一个发财机会,买入一只超牛的熟人介绍的股票,他身家好多亿,自己把钱全押进去了,万无一失。

你跟着杀进去,结果特别意外的事情发生了,概率极小,股票大跌。

煮熟的鸭子飞了。

现实世界里,煮得多熟的鸭子,都有可能再次飞起来,变成一只“黑鸭子”。

所以,聪明的玩家会在机会出现之时,通过计算,押上他们最佳的赌注。

一个人的成就大多取决于做决策,做选择,也就是分配资源。

下注,就是分配资源。

找到好的下注方法,是为了满足如下两个目标:

1、永不爆仓;

2、长期收益最大。

凯利公式由此而来。

凯利公式,向来充满了各种争议。它或者被高估,或者被误解。

最近我看到一篇强调“高赔率投资”的文章里,举了一个例子:

按照凯利公式:

  • 一个10倍赔率的机会,如果只有10%的概率赢,最佳下注仓位只有1%;

  • 一个0.5倍赔率的机会(赚1亏2),如果有80%概率赢,最佳下注仓位可以到40%。

该文由此认为:

经典投资理论更倾向于进行高概率的投资,能够提高对概率的把握就是提高胜率。

按照(凯利公式)这套重概率(胜率)轻赔率的做法,想在投资实践中获得高收益是非常不容易的。

因为概率很难预估,并且由于投资并非扔骰子式的大规模重复,对结果无法验证。

问题来了,凯利公式真的“重胜率轻赔率”吗?

并非如此。

要想回到这个问题,我们需要简单了解一下,凯利公式是怎么得来的。

  • 某次下注,假如你赢了,总资金就会变成:

现有本金=原来本金➕下注金额✖️赔率。
其中,下注金额=原来本金✖️下注比例。
  • 某次下注,假如你输了,总资金就会变成:

现有本金”=原来本金”➖下注金额。

因为我们在乎的是长期下来自己的总收益是多少,所以,要计算的是多次下注后本金的最大值。

在公式中,f为下注占总资金的百分比,p为获胜概率,b为赔率,E为期望值

  • 当你赢了,你的本金增加为原来的(1+f×b)倍。

  • 当你输了,你的本金减少为原来的(1–f)倍。

  • 假如你一共下了N次注,那就是Np次赢,N(1-p)次输,并将所有的增减倍数乘在一起。

对赌徒而言,最终收益,不是加减法,而是一个乘积,如下:

总收益=本金✖️(1+f×b)✖️(1–f)✖️(1–f)✖️(1+f×b)......

凯利公式是为了让上面这个乘积长期而言最大化

每一次下注,都是二维的“期望值”计算,例如前面出现过的下图:

连续N次的下注,就变成了三维世界:

我们最后赚到的钱,是许多次下注累加在一起的统计学结果。

当已知胜率和赔率时,每次下注的比例,将一个个二维世界串在一起,变成了一个三维世界。

凯利公式的目标是最大化资产的增长率,也即最大化对数资产的期望值

资产的对数期望值,计算如下:

该计算可分为两部分理解:

  • 加号以前是有p的概率获得f×b的资金;

  • 加号以后是有(1–p)的概率损失的赌注。

为了得到E的极大值,对E求一阶导为0。

由此,我们得到了凯利公式:

凯利公式,将“胜率、赔率、下注比例”整合在一起。

凯利公式并没有更重视“胜率”或者“赔率”。

该公式的目的,是确保下注者不爆仓的前提下,实现“拥有正期望值之重复行为”长期增长率最大化。

其中的关键点是:

拥有正期望值之重复行为。

几乎所有的赌博,期望值都是负数,即使熟练运用凯利公式也无济于事。

人们批评凯利公式的主要原因,是其适用于所有已知概率或者概率可以被估计的赌博或投资中。

因为最早索普是将其应用于玩儿赌场的21点。

但是,在资本市场上,胜率和赔率都是不确定性的,并且单次下注无法复现,也因此不能验证。

再有,谁会在每次投资前用凯利公式计算一下呢?

然而,凯利公式的精确性和简洁性,是毋庸置疑的:

  • 公式背后“通过控制下注比例控制风险并兼顾最大化收益”的投资理念也是对的。

  • 凯利公式在某种意义上,帮助投资者实现了期望值为正时的“遍历性”。

需要注意的是:运用凯利公式时,不能加杠杆,在估算胜率和赔率时,宁可保守一些。

那么,凯利公式是不是真的重概率轻赔率吗?

并非如此。

反过来说:

  • 凯利公式告诉我们,过少下注所导致的“收益减少”的风险,要远小于过度下注所导致的亏钱风险。

  • 这二者之间,并不是线性关系。

避免永久性损失,永远是投资人第一要考虑的事情。

即使你有90%的胜率,赔率高达十倍,凯利公式也会告诫你不要All in。

因为胜率高达90%,意味着你仍然有10%的可能性输掉。

多少英雄豪杰,就是因为不懂(或不接受)这一点,而被“吸附”在小概率的坑里爬不出来。

此外,对于创业者和投资人,源源不断的弹药(不包括那些短期高息的负债),能够让他们在下注上更加从容。

所以王兴说创始人最主要的三个任务之一就是找到足够多的钱,实现“无限游戏”。

即使一位投资高手不懂或者不用凯利公式来计算自己的每次下注,但是这种投资原则流淌于他们的血液之中。


四维:更新

继续说本文的四个维度的框架

至此,有人会说,你怎么知道胜率是多少?你怎么知道赔率是多少?不知道胜率和赔率你怎么计算下注比例?

没错,胜率和赔率,是下注者的主观信念。

  • 在赌场,我们可以用“频次”来计算出轮盘赌的概率,因为可以大规模重复。

  • 在现实世界的更多场景下,我们需要贝叶斯理论的主观概率。

即使是在一个“过去表现并不代表未来”的投资领域,概率思维一样适用。

如果说,胜率是一维,期望值计算是二维,下注比例是三维,那么,在每一次下注之间,还有一个不断更新胜率和赔率的过程。

我将这种更新,称为“四维”。

很厉害的人,面对不确定性事件时,他的预测准确率未必比你高。

但是他的更新速度非常快。

反之,我们想想看,有多少人,拿了一手好牌,人也聪明,又很拼,结果却打得稀烂,一点儿没什么奇怪的。

简单概括一下,为了让自己成为赢家,在概率上获得优势,你需要做到:

1、拥有洞见。

卓越投资人能够洞察未来趋势,因而能够提前布局,提高胜算。

2、尊重常识。

所谓常识,就是大概率对的事情,也就是模糊的正确。

3、大胆去蒙。

你要用一种实验者、试吃者的心态去试错。

4、快速更新。

因为许多事情都是一个连续决策过程,所以前几个预测歪一点儿问题不大,贝叶斯推理的特点就是可以让你通过主动犯错迅速地接近正确。

就像孤独大脑的一位厉害读者的评论:

一切都是随机性地边试错边猜,试得多了,猜得多了,自然试对猜准的概率就大了,光猜不试,那就不是在一个圈子里混的。


原点:人性

在这个框架里,讨论完一维、二维、三维、四维之后,让我们回到原点:

人性。

我们生活在一个交织着物理定律人性法则的世界。

马斯克擅长两个专业:

  • 一个是物理角度的精通“第一性原理”,把车造出来;

  • 一个是人性角度的解释能力,说服人去买。

他推动了全人类对电动车的关注,并由此重新定义了特斯拉估值体系,让公司有了更好的赔率。

“人性”这个话题我不打算展开,只是给出一个结构。

投资中对人性的利用,大概可分为三种:

1、善意的。

例如价值投资者所宣扬和坚持的美德。

2、中性的。

例如《大空头》里的赢家们,以及一些“正向黑天鹅”套利者。

3、恶意的。

各种忽悠者,说谎者,割韭菜者。

最后一种常用的手段,就是利用操控赔率。

《影响力》的某位读者讲过一个故事,谈老手如何操纵赔率:

跑马场的赔率是根据马身上下的赌注来确定的,一匹马身上押的钱越多,赔率就越低。

因为好多赌马的人对赛马或下注策略的知识少得可怜,所以他们就会把注下在最受欢迎的那匹马上。

赌马老手会挑选一匹赔率很大(比如15 : 1)、根本没机会赢的马,下注的窗口一打开,这人就把100美元投在这匹劣马上,于是计分板上显示的赔率一下就降到了2 : 1,创造出“这匹马很受欢迎”的假象。

人们纷纷把钱押在这匹 “最受欢迎”的马身上。

因此,老手真正看中的马赔率变得比较高。要是这家伙赢了,先前的 100美元投资就能赚回好多倍。

每当你要下注的时候,请想起这个故事,记住有可能你的游戏是被老手们操纵的。


如上所述,我给出一个直观的、量化的、整体的"胜率、赔率、下注"理解框架

对于以上讨论,最容易引发争议的,莫过于:

  • 怎么去“蒙”胜率和赔率是多少?

  • 这种量化思考有意义吗?

  • 要是真能算的话,为什么数学教授和诺奖经济学得主没成世界首富?

没错,胜率是基于统计学意义上的,而且也是主观的,但你也必须有。

贝克汉姆不需要通过计算抛物线,也能够踢出世界一流的任意球,这得益于他的无数次苦练,以及人类大脑神奇的计算力。

在更加充满随机性的现实世界,知道为什么,也许未必能让你成为首富(即使有这样的公式,很快就会因为人尽皆知而失效了),但是可以为你提供一个概率保护层。

至少通过如上分析,我们知道:

单一地去理解胜率、赔率和下注,毫无意义。

促发我写这篇文章的原因,是有位朋友给我发了两篇文章,一个讲所谓赔率比更重要,一个讲所谓“不可能三角”,都是一些不明所以的夹层解释。

我既非投资专家,也不是数学老师,并无资格点评那些似是而非的说法,只是想搭出一个架子,引来更专业的人士来说个清楚。

例如推崇“十倍赔率”的投资方法,并以新能源汽车为例,说自己刚预测某股票,随后就抓了一个十倍股。

意思是说,与其抓个小P和(hu),不如专心憋个“大hu”。

但是,如果我们看看特斯拉的股价走势,就知道99%的时间特斯拉都在备受煎熬,股价暴涨几乎就是在那1%的时间里,而且你根本无法预测何时发生。

一种不与时间做朋友的投资方法,大概率不是好方法。

事实上,巴菲特也是靠十倍股发家的,去掉他漫长一生中主要一二十只股票,他的业绩也是一个笑话。

但问题在于,谁知道哪些是十倍股?

所以,最好的方法也许是:

第一步,用价值投资的方法种一片花园(对糟糕的风险说不);

第二步,等待其中十倍股的涌现。

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
【直播预告】决策者如何管理不确定性?不知道如何提高视觉语言大模型?浙大与联汇研究院提出新型多维度评测框架《中国专精特新企业发展报告(2022)》——一本系统解读专精特新企业最新政策的辅导书澳大利亚,要把战争决策权交给美国?落地超70个国家及地区,惠影医疗多维度布局肿瘤放射治疗器械市场真正的数字化,是CEO决策的底层逻辑要变了 | 商业观察第四范式陈雨强:企业智能决策的下一代技术「强化学习 + 环境学习」大话三国86:孙策的奋斗之路,二舅治好了他的精神内耗美国总统的问题是糟糕的政策而不是年龄:拜登一生中所有外交政策的决定都是错误的!策略分享:量化模型决策的工具型资产选择年度丧燃美食剧,是另一个维度上的爽片有关买房政策的误解和对米歇尔奥巴马的污蔑:歧视非裔引发了多少假新闻?现阶段买入工商银行算不算好的决策? | 银行观察美联储政策的两侧“尾巴“:两个非零概率的场景​避开这11个误区,你就是决策大师下周起,维州官宣重大变化!专家:这是一个非常糟糕的决策……政府迫切需要形成的共识及决策——房地产“新发展模式”探讨(29)很失望?国家决策完全正确!中国人民坚定支持中央决策!军民同心,上下同欲,众志成城!美联储激进加息背后:决策为何频频失误?高口碑纪录片在B站扎根,《人生第二次》实现多维度升级在南法的日子(8)----地中海海滩是人就永远纪念六四西红柿的吃法荟萃提高认知维度!向下兼容控制结果!你不得不学的《人性的弱点》这个星座的感情从来都不需要刻意的维护比纳公司苹果汁的风险决策顶级领导力,5个维度读《两次全球大危机的比较研究》 了解经济政策的思路!“不得不在决策桌前给中国留个位置”决策日指南:美联储或放弃渐进主义 采取更有力行动撼动通胀心要放在現在平局 | 全面解读美国对台政策的摇摆原因和玩火性质:佩洛西若坚持窜访,必然挨揍~三十年,兜兜转转又回到了原点买多少送多少!这款爆火的维生素限时优惠!只剩最后一天,速抢!
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。