Redian新闻
>
业界领先的这些大模型,都被一家「收编」了

业界领先的这些大模型,都被一家「收编」了

科技

机器之心报道

机器之心编辑部


毋庸置疑,GPT-4 发布是一件足以载入 AI 史册的大事件。但随着时间的推移,人们也发现,即使是最先进的大模型也还没有强大到可以把所有的事情都做完。比如,如果你把一份很长的文本粘贴到 GPT-4 的对话框,它会告诉你文本过长,处理不了(它支持的上下文窗口仅为 32k token,约 2.5 万汉字)。


再比如,如果你需要算一个超过 8 位数字乘法的运算,或者涉及小数、分数的运算,GPT-4 可能也给不出正确答案(其多位乘法运算准确率仅为 4.3%)。 



看起来,现阶段我们并没有实现理想中的「通用人工智能」,强如 GPT-4 也并不完美。这也意味着,对于大模型使用者或者想在其上开发应用的技术人员来说,GPT-4 或许不是唯一的选择,甚至不是最适合的选择。


那么,在生成式 AI 的下半场,应用到底应该怎么造?这并不是一个能够简单得出答案的问题,很多时候,我们恨不得把现有的比较强的模型都试一下。但即使要做这件事也不容易,因为很多模型在发布的同时其实并没有提供太多「配套服务」,试用也有成本和代价。


好在,拥有强大基础设施的亚马逊云科技也关注到了这些问题。近日正式上线的 Amazon Bedrock 就是奔着「提供更多选择」和配套服务这一目标来的。


Claude、Llama 2、Stable Diffusion... 超全明星模型库


除了 ChatGPT,在更多领域中,人们想要应用生成式 AI 还存在肉眼可见的挑战:我们必须构建专用于生成式 AI 的硬件基础设施,配合自身数据对大模型进行调优,不断更新部署,同时还需要保护隐私数据的安全。即使对于科技公司而言,这也是非常复杂的事。


对此,亚马逊云科技拿出了一套帮助人们建大模型应用的「基础设施」。


今年 4 月,亚马逊云科技正式发布 Amazon Bedrock,这是一套生成式 AI 全托管服务,包含业界领先的基础模型和构建生成式 AI 应用程序所需的一系列功能。


 

Amazon Bedrock 汇聚了业内几乎所有领先的基础大模型,面对不同应用场景,它可以让人们只需通过单一 API 就能用上来自 AI21 Labs、Anthropic、Cohere、Meta Llama2、Stability AI 等公司的先进大模型来构建自己的应用。


提到亚马逊,很多人可能都会想到前段时间的一个重要融资事件:他们计划对 OpenAI 头号竞争对手 ——Anthropic 投资 40 亿美元。


在大模型创业领域,Anthropic 是一个非常耀眼的存在。它由 OpenAI 前研究副总裁 Dario Amodei、GPT-3 论文第一作者 Tom Brown 等人在 2021 年共同创立,其创始成员大多为 OpenAI 的核心员工,他们曾经深度参与过 OpenAI 的 GPT-3,率先提出引入人类偏好的强化学习(RLHF)等技术。


 

这套强大的阵容打造出了一个同样耀眼的模型 ——Claude(最新版本是 Claude 2)。在某些方面,这个模型甚至做到了 GPT-4 都没做到的事情,比如 100k token 的上下文窗口,其代码生成能力也超过了原版的 GPT-4。这些都是亚马逊选择投资 Anthropic 的重要原因。


更重要的是,亚马逊云科技发布的新闻中有这么一段话:「作为投资协议的一部分,Anthropic 将使用亚马逊云科技的服务承担关键任务工作负载,合作进行安全研究和未来基础模型开发。使用亚马逊云科技的开发人员和工程师将能够通过 Amazon Bedrock 在 Anthropic 最先进的模型基础上构建应用。」


没错,应用生成式 AI,现在有了新的思路:有人把表现优秀的模型上线到 AI 基础设施平台上,让用户去选什么是最合适的。为了扩大操作的范围,Amazon Bedrock 不仅上线了 Claude 2,还有开源界的扛把子 Llama 2 以及口碑同样很好的 Jurassic-2、Command 等模型。


Jurassic-2 来自 AI21 Labs,是业内规模最大,性能最强的几种基础大模型之一。在 Amazon Bedrock 上甚至提供了超千亿参数的 Ultra 版本,其可以应用于任何复杂的语言生成任务,例如问答、摘要、长格式副本生成、高级信息提取等,也支持多种语言。


Command 则是另一家明星创业公司 Cohere 推出的,可够接受用户个性化命令训练的文本生成模型。企业用户在将自己的数据和 Command 结合之后,就可以生成一个面向特定应用的语言模型,能在实际业务中立即发挥作用。在 520 亿参数的体量之上,Command 的性能超过了很多更大的模型。


此外,在 ChatGPT 之前就已席卷 AI 圈,拥有强大文生图能力的 Stable Diffusion 也在他们的模型列表里。



至此,在大模型应用的方向上,一条道路正在变得逐渐清晰。


生成式 AI 落地的全流程服务


最近在业内,人们对于大模型的应用方向逐渐形成了一种思路:利用业内领先的大模型作为基础模型(Foundation Model),配合自有数据进行训练和调优,进而构建出面向不同业务场景的应用。亚马逊云科技把这条路迅速成为了现实,还进一步降低了企业入门的难度。


在 Amazon Bedrock 的基础之上,企业可以更方便、快速地尝试各种领先的基础模型,进行提示工程,完成微调和检索增强生成(RAG)等动作,使用自身专有数据定制模型。


利用 Amazon Bedrock Agents 工具生成式 AI 应用的开发、部署、管理等 Agent 能力被集合在一起。我们可以像用 AutoGPT 一样无需编写任何代码就能创建出托管代理(AI agent),让它来指挥大模型执行复杂的任务,如旅行预订、处理保险索赔、策划广告活动和管理库存等。


只需用自然语言文字写指令,Agent 就能明白要完成的目标。


在平台和硬件上,作为专为人工智能打造的平台,Amazon Bedrock 连接了亚马逊云科技的基础设施,从硬件和软件都对 AI 计算进行了专门的优化,覆盖大模型从构建、训练到部署的一系列工作负载。由于 Amazon Bedrock 采用无服务器(Serverless)技术,客户不必管理任何基础设施,就能在熟悉的亚马逊云科技服务平台上将生成式 AI 能力安全地集成和部署到应用程序中。


想要做大模型的应用,一个绕不过的问题就是算力的成本。最近就有人给微软 GitHub Copilot 的服务算了笔账:每月每位用户收费 10 美元,结果微软反而还要倒贴 20 美元



对于亚马逊云科技这样的服务厂商而言,提高算力、降低成本的系统性解决方案是其最擅长的事。以使用最先进 AI 芯片英伟达 H100 的 Amazon EC2 P5 为例,它可以为训练大模型提供高达 20 exaflops 的计算性能。与上一代基于 GPU 的实例相比,训练时间最多可缩短 6 倍,而训练成本则可以降低多达 40%。


具体到每 token 的价格上,Amazon Bedrock 上使用 Claude 系列模型的价格相比 GPT 系列有显著优势。


当然,Amazon Bedrock 也充分考虑了安全性和隐私保护。客户可以使用 Amazon PrivateLink 在 Amazon Bedrock 与虚拟私有网络(VPC)之间建立专门的安全连接,确保任何数据传输都不会暴露在公共网络上。


有趣的是,除了可以高效构建生成式 AI 应用之外,亚马逊云科技也在其他层面上充分利用技术帮我们提高工作效率,比如利用大模型工具写有你「自己风格」的代码。


Amazon CodeWhisperer 是亚马逊云科技提出的 AI 编码应用程序,可在 IDE 中生成整行代码和完整的函数代码建议,帮人加速完成工作,它在今年 6 月发布了预览版,并对个人开发者免费。目前它可以帮人们生成的 15 种编程语言的代码,包括 Python、Java 和 JavaScript。



最近,亚马逊云科技推出了一项 CodeWhisperer 企业计划,旨在实现自定义化的 AI 代码生成和建议服务。基于新功能,用户可以利用企业内部的代码存储库当训练数据,让 AI 相应地调整代码生成建议,管理员也可以从控制台管理自定义,在控制台查看评估指标,估计每个自定义的执行方式,并有选择地将它们部署给开发人员,保证了企业质量与安全标准。


在开发新技术之外,我们也能应用生成式 AI 提高业务评估和诊断的效率。Amazon QuickSight 提供了生成式 BI 的数据分析功能,它能够创建交互式仪表盘、分页报告以及嵌入式分析,同时具备进行自然语言查询的能力,让业务分析师能够更加方便快捷的探索数据,并使用自然语言描述轻松创建可视化报告。


在所有流程上,亚马逊云科技提供的能力大幅度降低了先进大模型的落地门槛,在人们使用技术领先大模型的同时,消除了管理环境、配置硬件与安全管理的事务,只需要关心业务创新就可以了。



生成式 AI 的变革,应该走这条路


我们知道,生成式 AI 的前景是不可限量的。


随着门槛被 AI 基础设施打下来,我们可以展望:在医疗健康领域,让 AI 自动提取关键细节并根据临床医生与患者的互动创建文档摘要;在药物发现上,使用生成式 AI 工具进行蛋白质折叠、蛋白质序列、对接和分子设计,加速药物发现和设计过程;在制造业中,生成式 AI 可以通过提取历史数据实时诊断设备故障,并建议维护操作,例如输入调整、维修或可能的备件。


利用开箱即用的生成式 AI 服务提升创新效率,更快地构建出实用化应用,或许才是大模型时代创新的正确方式。


如此看来,构建平台,降低门槛的意义与 Llama2 这样的重要技术创新可谓同等重要。


正如亚马逊 CEO Andy Jaessy 所说的:「让任何人,哪怕他还在自己的宿舍或者车库里刚刚开始创业之旅,也能获得与大型企业一样先进的基础设施和成本来实现自己的创新。我们希望帮助所有初创企业都有机会成为明天的『巨头』。」


亚马逊云科技提供的服务,正在让众多这场 AI 浪潮的旁观者变成参与者。我们可以期待,生成式 AI 会在不远的未来颠覆更多行业。


参考内容:

https://aws.amazon.com/cn/blogs/china/new-amazon-ec2-p5-instances-powered-by-nvidia-h100-tensor-core-gpus-for-accelerating-generative-ai-and-hpc-applications/

https://aws.amazon.com/cn/blogs/machine-learning/announcing-new-tools-to-help-every-business-embrace-generative-ai/


© THE END 

转载请联系本公众号获得授权

投稿或寻求报道:[email protected]

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
【图解】聚焦主导产业、提升服务水平、优化园区布局……我市发布关于推进张江高新区改革创新发展建设世界领先科技园区的若干意见咨询外企校招 | WTW韦莱韬悦2024校招开启,百年外企,全球领先的咨询公司,偏爱留学生华为承受不了那么多遥遥领先的谣言渡十娘|华为承受不了那么多遥遥领先的谣言【首发】「微眸医疗」完成数千万元Pre-A轮融资,加速打造全球领先的眼科手术机器人在大模型数量全国领先的北京,昇腾AI“点燃”首个普惠算力底座华为遥遥领先的「尴尬」,问界为何无法全系标配ADS2.0?Web3八年沉浮,被AI大模型收编硬核“国货”标价999999元?网友:世界领先,特意展示精神状态领先的人,相遇在寺庙李开复零一万物发布首款大模型;马斯克xAI发布首个大模型;360、美团、昆仑万维等最新消息;vivo发布蓝心AI大模型​晚点财经|集成大模型,或者被大模型集成;10 月中国进口额恢复增长吹尽黄沙不见金(七十八):重责北京理工大学发布双语轻量级语言模型,明德大模型—MindLLM,看小模型如何比肩大模型百度云上交大模型成绩单:接入42个大模型,月活企业近万家|甲子光年移民生活(22)一个家庭悲剧的酿成【首发】墨卓生物完成数千万Pre-B轮融资,加速商业化推广、打造国际领先的生科工具平台【首发】打造全球领先的iPS全人源化仿生微器官研发服务平台,淇嘉科技完成数千万天使轮融资鸥鹭乡土|再访陕北,用延安精神探寻国际领先的"保险+期货"金融助农新模式为防大模型作恶,斯坦福新方法让模型「遗忘」有害任务信息,模型学会「自毁」了理想汽车销量持续领先的另一个秘诀 |【经纬低调分享】引入33个大模型,百度智能云千帆大模型平台的“破茧时刻”免费大模型实战课|首周聚焦百度智能云千帆大模型平台使用,《大模型应用实践》实训营11月16日开讲!笑谈邂逅(32)在广州会见美国RIDER大学校长行业一个断层领先的项目小模型如何比肩大模型,北理工发布明德大模型MindLLM,小模型潜力巨大本轮反弹领先的板块,能否成为未来的龙头?朱啸虎:不要追逐大模型,要跟着大模型进化对话前华为高管,遥遥领先的背后,华为组织管理文化的秘密。手机大模型爆发:vivo 发布自研蓝心大模型,参数追赶 GPT-3《海天》&《怀念青春》揭秘最领先的Llama2中文大模型!中国医药界腐败的来龙去脉苹果正式发布iPhone 15 !全系上岛换 C 口,还有一个遥遥领先的更新曝OpenAI大模型新进展!将推出多模态大模型,新项目Gobi筹备中
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。