Redian新闻
>
Molecular Cell | 北京大学魏文胜团队实现人类蛋白质组中赖氨酸位点的功能解码

Molecular Cell | 北京大学魏文胜团队实现人类蛋白质组中赖氨酸位点的功能解码

公众号新闻

氨基酸作为构成蛋白质的基本单位,对蛋白质的结构和功能至关重要,而其变化也与多种疾病的发生发展密切相关。尽管目前利用碱基编辑等技术1,2可以在基因组中实现碱基替换进而改变密码子,产生内源氨基酸的突变,但在全蛋白质组范围内对特定氨基酸残基进行系统性的功能分析仍然面临挑战。

2023年11月22日,北京大学生命科学学院魏文胜教授团队在Molecular Cell杂志在线发表了题为“Unbiased interrogation offunctional lysine residues in human proteome”的研究论文。该研究采用腺嘌呤碱基编辑工具,建立了一种在全蛋白质组范围内筛选功能性氨基酸位点的策略,并通过细胞适应性筛选,获得了蛋白质组功能性赖氨酸位点的图谱。

在人类蛋白质组众多的氨基酸残基中,研究者首先关注了赖氨酸。赖氨酸残基携带正电荷,在蛋白质的结构、与其他分子的相互作用等方面发挥着重要作用,同时也是多种蛋白质翻译后修饰(如泛素化、乙酰化、甲基化)的重要受体氨基酸残基。赖氨酸的密码子为5’-AAA或5’-AAG,利用腺嘌呤编辑器(Adenine base editors, ABEs)对其密码子进行编辑,可以实现赖氨酸的定向突变(图1)。

图1. 赖氨酸定向突变示意图

该研究利用ABEmax系统在人视网膜色素上皮细胞系RPE1中构建了靶向赖氨酸位点的sgRNA文库3,包含约30万条sgRNA,覆盖了85%的编码基因、85%的蛋白质以及35%的赖氨酸密码子。为提高筛选质量并大幅缩减建库所需细胞数量,研究者结合团队前期建立的iBAR策略进行了细胞适应性筛选4,最终获得了1572个促进或抑制细胞存活的赖氨酸突变位点。

基于课题组前期在RPE1细胞系中进行的基因敲除筛选结果5,研究者将赖氨酸位点的得分映射到其所在基因上,形成了基因(蛋白)-赖氨酸位点的功能性图谱(图2)。值得注意的是,大量赖氨酸位点的突变导致细胞表现出与相应基因敲除不同的细胞适应性表型。在这些突变位点中,有805个位点突变后会抑制细胞存活,然而对应的基因敲除却未对细胞存活产生影响或促进细胞存活。通过对国际癌症基因组联盟数据库(ICGC)的数据挖掘,研究者鉴定了若干具有临床意义的赖氨酸突变位点,包括已有报道的TP53-K120、BRAF-K601、PTEN-K13等位点,然而大多数赖氨酸位点的功能仍不为人知。

图2. 两种筛选结果对比图

在正向富集的赖氨酸位点中,研究者发现了一个以CUL3为核心的调控网络。CUL3是泛素化复合物(cullin-RING ligases,CRLs)中的重要成员。该研究筛选到位于其骨架蛋白、接头蛋白、激活蛋白、底物蛋白多个赖氨酸位点(图3)。通过亲和纯化-质谱等方法,研究者发现CUL3-K638E能够显著削弱CUL3和去nedd化复合物(COP9 signalosome,CSN)的结合,导致其持续处于nedd化状态而最终降低了稳定性。

图3. CUL3 CRLs复合物

最终,研究者将关注点聚焦在CUL3的接头蛋白KCTD10的K171位点上,该位点在一名乳腺癌患者体内检测到了突变(K171E)。通过一系列实验,研究者证实KCTD10-K171能够发生乙酰化修饰,并通过调控细胞周期蛋白TPX2和INCENP的蛋白稳态来控制下游信号通路,确保细胞周期正常进行。KCTD10-K171的突变可能导致细胞周期蛋白无法正常降解,从而引起细胞过度增殖。该位点可能成为潜在的癌症标志突变,有助于癌症的诊断和预后,并为新药研发提供指导。

总的来说,本研究利用碱基编辑技术成功建立了高通量的氨基酸精度功能性筛选方法,为系统性研究蛋白质功能和调控机制提供了新的有效手段。同时,所得到的氨基酸精度的蛋白质功能性大数据为更深入地理解蛋白质调控机制,尤其是翻译后修饰机制,提供了有力的依据(图4)。

图4. 总结图

魏文胜课题组博士后宝颖、博士研究生潘倩和已毕业的许萍博士和刘志恒博士为论文的共同第一作者,魏文胜和副研究员周卓(现为中国医学科学院系统医学研究院/苏州系统医学研究所研究员)为论文的共同通讯作者。该研究获得了国家重点研发计划、国家自然科学基金、北京市科委生物医学前沿创新推进项目、中国医学科学院医学与健康科技创新工程、北大-清华生命科学联合中心、北京昌平实验室、重大疾病共性机制研究全国重点实验室等的支持。

参考文献:
1. Komor, A.C., Kim, Y.B., Packer, M.S., Zuris, J.A., and Liu, D.R. (2016). Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424. 10.1038/nature 17946.
2. Gaudelli, N.M., Komor, A.C., Rees, H.A., Packer, M.S., Badran, A.H., Bryson, D.I., and Liu, D.R. (2017). Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551, 464–471. 10.1038/nature 24644.
3. Koblan, L.W., Doman, J.L., Wilson, C., Levy, J.M., Tay, T., Newby, G.A., Maianti, J.P., Raguram, A., and Liu, D.R. (2018). Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nat. Biotechnol. 36, 843–846. 10.1038/nbt.4172.
4. Zhu, S., Cao, Z., Liu, Z., He, Y., Wang, Y., Yuan, P., Li, W., Tian, F., Bao, Y., and Wei, W. (2019). Guide RNAs with embedded barcodes boost CRISPR-pooled screens. Genome Biol. 20. 10.1186/s13059-019-1628-0.

5. Xu, P., Liu, Z., Liu, Y., Ma, H., Xu, Y., Bao, Y., Zhu, S., Cao, Z., Wu, Z., Zhou, Z., et al. (2021). Genome-wide interrogation of gene functions through base editor screens empowered by barcoded sgRNAs. Nat. Biotechnol. 10.1038/s41587-021-00944-1.

来源:北京大学、Bioon细胞

          

   




主编微信

商务合作,重要事宜

赵编微信(加群小助手)


注:添加微信请备注昵称+单位+研究



生命科学综合交流QQ群:681341860

微信学科群:病毒学群,神经科学群、临床医学、肿瘤学科群、硕博交流群和医药投资交流群(微信群审核要求较高,请各位添加赵编后主动备注单位研究方向)

          


微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
探寻西西里与马耳他的历史脚印(17)AI读脑成真,延迟仅0.25秒!Meta里程碑新研究:MEG实时解码大脑图像,LeCun转赞类器官新进展!Cell Stem Cell :科学家开发出带有免疫成分的结肠类器官,实现功能性驻留巨噬细胞共培养Hinton和LeCun再交锋,激辩LLM能否引发智能奇点!LeCun:人类理解能力碾压GPT-4德睿论文|Molecule Dance揭秘药物-蛋白质动态结合方式Molecular Plant | 上海交大林文慧研究组揭示液泡膜质子泵V-ATPase调控BR信号平衡的机制Cell Metabolism | 中山大学潘超云/姚书忠/刘军秀团队联合揭示酪氨酸分解代谢调控卵巢癌化疗敏感性的分子机制产出精氨酸酶活性提升5.2倍,湖北大学系统性改造地衣芽孢杆菌Tat途径,扩展高价值蛋白生产前景Nature|中国医学科学院崔胜团队在原核生物抗病毒免疫领域取得新进展Cell | 精氨酸或能驱动癌细胞的代谢重编程从而促进肝癌的进展Lululemon/Hollister半价!Levi's季中大促!卡诗洗护5折起!李飞飞团队实现“隔空建模”,透过遮挡物还原完整3D人体模型6024 血壮山河之随枣会战 第三章 3Molecular Therapy | 浙江大学研究团队通过融合超抗原以提高T细胞衔接器在实体瘤中的疗效Journal of Virology|复旦大学张超:首次全面鉴定了肠道病毒D68的中和性抗原位点第四章 牛刀初试影响分泌机制靶向消除蛋白,「分子门」获6000万美元A轮融资,或涉及炎症、蛋白质聚集和中枢神经系统疾病Amur Leopard Killed in Northeast China, Tiger a Likely CulpritCell |新研究首次构建出眼睛的蛋白质组时钟,有望开发出治疗眼病的新方法《移居蒙城20周年》Mol Cell|北京大学魏文胜团队实现人类蛋白质组中赖氨酸位点的功能解码Bioactive Materials | 北京大学吕万良团队在基因工程化PD1蛋白制剂用于肿瘤免疫治疗研究取得进展Nature子刊 | 清华大学陈立功/刘万里合作发文揭示MCT1转运蛋白在IgG抗体类别转换中的功能仅根据蛋白质序列便可预测相互作用界面,一种基于Transformer的蛋白预测模型Immunity|朱正江课题组及合作者发现肠道菌群代谢物N-乙酰赖氨酸通过“菌群-肠-脑”轴调控多发性硬化症的分子机制深圳湾实验室团队最新综述:蛋白质结构预测中“分而治之”的策略,以及后AlphaFold2时代Cell Stem Cell | 新冠伤脑!陈水冰团队新研究表明SARS-CoV-2可以感染多巴胺能神经元并致其衰老探寻西西里与马耳他的历史脚印(18)Cell Stem Cell | 陈水冰团队有望利用类器官模型识别并开发新型潜在的胰腺癌疗法Advanced Science | 曹楠教授团队报道人多能干细胞分化的蛋白质稳态维持机制150刀Apple Watch S3 42mm gps + cellular stainless steel 中科大发布2023年学术期刊负面清单!神刊Plos One、Molecules、ncology系列在列!Nature子刊 | 西湖大学党波波团队开发单一主链酰胺键位点选择性的蛋白质化学偶联方法Nature子刊 | 西湖大学施一公团队揭示剪接体进行分支位点选择、校正的分子机理CELINE墨镜买一送一、lululemon全场巨折、黑五超全折扣信息!你想知道的薅羊毛一手资讯都在这里...
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。