参考文献
1. Fox CS, Vasan RS, Parise H, Levy D, O’Donnell CJ, D’Agostino RB, Benjamin EJ; Framingham Heart Study. Mitral annular calcification predicts cardiovascular morbidity and mortality: the Framingham Heart Study. Circulation.2003;107:1492–1496.
2. Sell S, Scully RE. Aging changes in the aortic and mitral valves. Histologic and histochemical studies, with observations on the pathogenesis of calcific aortic stenosis and calcification of the mitral annulus. Am J Pathol.1965;46:345–365.
3. Delling FN, Vasan RS. Epidemiology and pathophysiology of mitral valve prolapse: new insights into disease progression, genetics,and molecular basis. Circulation. 2014;129:2158–2170. doi:10.1161/CIRCULATIONAHA.113.006702
4. Delling FN, Rong J, Larson MG, Lehman B, Fuller D, Osypiuk E, Stantchev P, Hackman B, Manning WJ, Benjamin EJ,et al. Evolution of mitral valve prolapse: insights from the Framingham Heart Study. Circulation. 2016;133:1688–1695.
5. Hjortnaes J, Keegan J, Bruneval P, Schwartz E, Schoen FJ, Carpentier A, Levine RA, Hagege A, Aikawa E. Comparative histopathological analysis of mitral valves in Barlow disease and fibroelastic deficiency.Semin Thorac Cardiovasc Surg. 2016;28:757–767. doi:10.1053/j.semtcvs.2016.08.015
6. Dietz HC, Cutting GR, Pyeritz RE, Maslen CL, Sakai LY, Corson GM,Puffenberger EG, Hamosh A, Nanthakumar EJ, Curristin SM, et al. Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature. 1991;352:337–339.
7. Loeys BL, Chen J, Neptune ER, Judge DP, Podowski M, Holm T, Meyers J, Leitch CC, Katsanis N, Sharifi N, et al. A syndrome of altered cardiovascular,craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat Genet. 2005;37:275–281. doi:10.1038/ng1511
8. Lee B. Characterization of a large deletion associated with a polymorphic block of repeated dinucleotides in the type Ill procollagen gene (COL3AI) of a patient with Ehlers-Danlos syndrome type IV. Am J Hum Genet.1991;48:511–517.
9. Le Tourneau T, Le Scouarnec S, Cueff C, Bernstein D, Aalberts JJJ, Lecointe S, Merot J, Bernstein JA, Oomen T, Dina C, et al. New insights into mitral valve dystrophy: a filamin-A genotype-phenotype and outcome study. Eur Heart J. 2018;39:1269–1277. doi: 10.1093/eurheartj/ehx505
10. Durst R, Sauls K, Peal DS, deVlaming A, Toomer K, Leyne M, Salani M, Talkowski ME, Brand H, Perrocheau M, et al. Mutations in DCHS1 cause mitral valve prolapse. Nature. 2015;525:109–113. doi:10.1038/nature14670
11. Toomer KA, Yu M, Fulmer D, Guo L, Moore KS, Moore R, Drayton KD,Glover J, Peterson N, Ramos-Ortiz S, et al. Primary cilia defects causing mitral valve prolapse. Sci Transl Med. 2019;11:eaax0290. doi:10.1126/scitranslmed.aax0290
12. Dina C, Bouatia-Naji N, Tucker N, Delling FN, Toomer K, Durst R,Perrocheau M, Fernandez-Friera L, Solis J, Le Tourneau T, et al; PROMESA Investigators. Genetic association analyses highlight biological pathways underlying mitral valve prolapse. Nat Genet. 2015;47:1206–1211. doi:10.1038/ng.3383
13. Kyryachenko S, Georges A, Yu M, Barrandou T, Guo L, Bruneval P, Rubio T, Gronwald J, Baraki H, Kutschka I, et al. Chromatin accessibility of human mitral valves and functional assessment of MVP risk loci. Circ Res.2021;128:e84–e101.
14. O’Donnell A, Yutzey KE. Mechanisms of heart valve development and disease.Development. 2020;147:dev183020.
15. Roselli C, Yu M, Nauffal V, Georges A, Yang Q, Love K, Weng LC,Delling FN, Maurya SR, Schrolkamp M, et al. Genome-wide association study reveals novel genetic loci: a new polygenic risk score for mitral valve prolapse. Eur Heart J. 2022;43:1668–1680. doi:10.1093/eurheartj/ehac049
16. Castillero E, Fitzpatrick E, Keeney SJ, D’Angelo AM, Pressly BB, Simpson MT, Kurade M, Erwin WC, Moreno V, Camillo C, et al. Decreased serotonin transporter activity in the mitral valve contributes to progression of degenerative mitral regurgitation. Sci Transl Med. 2023;15:eadc9606. doi:10.1126/scitranslmed.adc9606
17. Ali S, Rehman MU, Yatoo AM, Arafah A, Khan A, Rashid S, Majid S, Ali A, Ali MN. TGF-beta signaling pathway: therapeutic targeting and potential for anti-cancer immunity. Eur J Pharmacol. 2023;947:175678. doi:10.1016/j.ejphar.2023.175678
18. Rath N, Wang Z, Lu MM, Morrisey EE. LMCD1/Dyxin is a novel transcriptional cofactor that restricts GATA6 function by inhibiting DNA binding. Mol Cell Biol. 2005;25:8864–8873. doi:10.1128/MCB.25.20.8864-8873.2005
19. Bian ZY, Huang H, Jiang H, Shen DF, Yan L, Zhu LH, Wang L, Cao F,Liu C, Tang QZ, et al. LIM and cysteine-rich domains 1 regulates cardiac hypertrophy by targeting calcineurin/nuclear factor of activated T cells signaling. Hypertension. 2010;55:257–263. doi:10.1161/HYPERTENSIONAHA.109.135665
20. Chang CP, Neilson JR, Bayle JH, Gestwicki JE, Kuo A, Stankunas K,Graef IA, Crabtree GR. A field of myocardial-endocardial NFAT signaling underlies heart valve morphogenesis. Cell. 2004;118:649–663. doi:10.1016/j.cell.2004.08.010
21. Carapetis JR, Beaton A, Cunningham MW, Guilherme L, Karthikeyan G,Mayosi BM, Sable C, Steer A, Wilson N, Wyber R, et al. Acute rheumatic fever and rheumatic heart disease. Nat Rev Dis Primers. 2016;2:15084. doi:10.1038/nrdp.2015.84
22. Dooley LM, Ahmad TB, Pandey M, Good MF, Kotiw M. Rheumatic heart disease: a review of the current status of global research activity. Autoimmun Rev. 2021;20:102740. doi: 10.1016/j.autrev.2020.102740
23. Cunningham MW. Molecular mimicry, autoimmunity, and infection: the cross-reactive antigens of group A streptococci and their sequelae.Microbiol Spectr. 2019;7:10.1128/microbiolspec.GPP3-0045-2018.
24. Ghamari SH, Abbasi-Kangevari M, Saeedi Moghaddam S, Aminorroaya A,Rezaei N, Shobeiri P, Esfahani Z, Malekpour MR, Rezaei N, Ghanbari A,et al. Rheumatic heart disease is a neglected disease relative to its burden worldwide: findings from Global Burden of Disease 2019. J Am Heart Assoc. 2022;11:e025284. doi: 10.1161/JAHA.122.025284
25. Passos LSA, Jha PK, Becker-Greene D, Blaser MC, Romero D, Lupieri A, Sukhova GK, Libby P, Singh SA, Dutra WO, et al. Prothymosin alpha:a novel contributor to estradiol receptor alpha-mediated CD8(+) T-cell pathogenic responses and recognition of type 1 collagen in rheumatic heart valve disease. Circulation. 2022;145:531–548.
26. Binstadt BA, Hebert JL, Ortiz-Lopez A, Bronson R, Benoist C, Mathis D.The same systemic autoimmune disease provokes arthritis and endocarditis via distinct mechanisms. Proc Natl Acad Sci U S A. 2009;106:16758–16763.
27. Meier LA, Auger JL, Engelson BJ, Cowan HM, Breed ER, Gonzalez-Torres MI, Boyer JD, Verma M, Marath A, Binstadt BA. CD301b/MGL2(+) mononuclear phagocytes orchestrate autoimmune cardiac valve inflammation and fibrosis. Circulation. 2018;137:2478–2493. doi:10.1161/CIRCULATIONAHA.117.033144
28. Wu XD, Zeng ZY, Gong DP, Wen JL, Huang F. Potential involvement of S1PR1/STAT3 signaling pathway in cardiac valve damage due to rheumatic heart disease. Biotech Histochem. 2019;94:398–403. doi:10.1080/10520295.2019.1574028
29. Guilherme L, Cury P, Demarchi LM, Coelho V, Abel L, Lopez AP, Oshiro SE, Aliotti S, Cunha-Neto E, Pomerantzeff PM, et al. Rheumatic heart disease: proinflammatory cytokines play a role in the progression and maintenance of valvular lesions. Am J Pathol. 2004;165:1583–1591. doi:10.1016/S0002-9440(10)63415-3
30. Zhao Z, He D, Ling F, Chu T, Huang D, Wu H, Ge J. CD4(+) T cells and TGFbeta1/MAPK signal pathway involved in the valvular hyperblastosis and fibrosis in patients with rheumatic heart disease. Exp Mol Pathol.2020;114:104402.
31. Gray LA, D’Antoine HA, Tong SYC, McKinnon M, Bessarab D, Brown N,Remenyi B, Steer A, Syn G, Blackwell JM, et al. Genome-wide analysis of genetic risk factors for rheumatic heart disease in Aboriginal Australians provides support for pathogenic molecular mimicry. J Infect Dis.2017;216:1460–1470. doi: 10.1093/infdis/jix497
32. Badarukhiya JA, Tupperwar N, Nizamuddin S, Mulpur AK, Thangaraj K. Novel FCN2 variants and haplotypes are associated with rheumatic heart disease.DNA Cell Biol. 2021;40:1338–1348. doi: 10.1089/dna.2021.0478
33. Teker E, Akadam-Teker AB, Ozturk O, Eronat AP, Yalin K, Golcuk SE, Bugra Z. Association between the interferon gamma 874 T/A polymorphism and the severity of valvular damage in patients with rheumatic heart disease.Biochem Genet. 2018;56:225–234. doi: 10.1007/s10528-017-9839-0
34. Catarino SJ, Andrade FA, Bavia L, Guilherme L, Messias-Reason IJ.Ficolin-3 in rheumatic fever and rheumatic heart disease. Immunol Lett.2021;229:27–31. doi: 10.1016/j.imlet.2020.11.006
35. Catarino SJ, Andrade FA, Boldt ABW, Guilherme L, Messias-Reason IJ.Sickening or healing the heart? The association of ficolin-1 and rheumatic fever. Front Immunol. 2018;9:3009. doi: 10.3389/fimmu.2018.03009
36. Messias Reason IJ, Schafranski MD, Jensenius JC, Steffensen R.The association between mannose-binding lectin gene polymorphism and rheumatic heart disease. Hum Immunol. 2006;67:991–998. doi:10.1016/j.humimm.2006.08.296
37. Ramasawmy R, Spina GS, Fae KC, Pereira AC, Nisihara R, Messias Reason IJ, Grinberg M, Tarasoutchi F, Kalil J, Guilherme L. Association of mannosebinding lectin gene polymorphism but not of mannose-binding serine protease 2 with chronic severe aortic regurgitation of rheumatic etiology. Clin Vaccine Immunol. 2008;15:932–936. doi: 10.1128/CVI.00324-07
38. Machipisa T, Chishala C, Shaboodien G, Zuhlke LJ, Muhamed B, Pandie S,de Vries J, Laing N, Joachim A, Daniels R, et al. Rationale, design, and the baseline characteristics of the RHDGen (The Genetics of Rheumatic Heart Disease) Network Study. Circ Genom Precis Med. 2023;16:e003641. doi:10.1161/CIRCGEN.121.003641
39. Parks T, Mirabel MM, Kado J, Auckland K, Nowak J, Rautanen A, Mentzer AJ, Marijon E, Jouven X, Perman ML, et al; Pacific Islands Rheumatic Heart Disease Genetics Network. Association between a common immunoglobulin heavy chain allele and rheumatic heart disease risk in Oceania. Nat Commun. 2017;8:14946. doi: 10.1038/ncomms14946
40. Machipisa T, Chong M, Muhamed B, Chishala C, Shaboodien G, Pandie S, de Vries J, Laing N, Joachim A, Daniels R, et al. Association of novel locus with rheumatic heart disease in Black African individuals: findings from the RHDGen study. JAMA Cardiol. 2021;6:1000–1011. doi:10.1001/jamacardio.2021.1627
41. Torres RPA, Torres RFA, de Crombrugghe G, Moraes da Silva SP,Cordeiro SLV, Bosi KA, Smeesters PR, Torres R. Improvement of rheumatic valvular heart disease in patients undergoing prolonged antibiotic prophylaxis. Front Cardiovasc Med. 2021;8:676098. doi:10.3389/fcvm.2021.676098
42. Cilliers A, Adler AJ, Saloojee H. Anti-inflammatory treatment for carditis in acute rheumatic fever. Cochrane Database Syst Rev. 2015:CD003176. doi:10.1002/14651858.CD003176.pub3
43. Avierinos J-F. Sex differences in the morphology and outcomes of mitral valve prolapse: a cohort study. Ann Intern Med. 2008;149:787–795.
44. Negi PC, Kandoria A, Asotra S, Ganju NK, Merwaha R, Sharma R, Mahajan K, Rao S. Gender differences in the epidemiology of rheumatic fever/rheumatic heart disease (RF/RHD) patient population of hill state of northern India; 9 years prospective hospital based, HP-RHD registry. Indian Heart J.2020;72:552–556. doi: 10.1016/j.ihj.2020.09.011
45. Woodruff RC, Eliapo-Unutoa I, Chiou H, Gayapa M, Noonan S, Podila PSB,Rayle V, Sanchez G, Tulafono R, Van Beneden CA, et al. Period prevalence of rheumatic heart disease and the need for a centralized patient registry in American Samoa, 2016 to 2018. J Am Heart Assoc. 2021;10:e020424.doi: 10.1161/JAHA.120.020424
46. Zuhlke L, Engel ME, Karthikeyan G, Rangarajan S, Mackie P, Cupido B,Mauff K, Islam S, Joachim A, Daniels R, et al. Characteristics, complications,and gaps in evidence-based interventions in rheumatic heart disease:the Global Rheumatic Heart Disease Registry (the REMEDY study).Eur Heart J. 2015;36:1115–1122a. doi: 10.1093/eurheartj/ehu449
47. Mocumbi AO, Jamal KK, Mbakwem A, Shung-King M, Sliwa K. The Pan-African Society of Cardiology position paper on reproductive healthcare for women with rheumatic heart disease. Cardiovasc J Afr. 2018;29:394–403.
48. Rafeek RAM, Sikder S, Hamlin AS, Andronicos NM, McMillan DJ,Sriprakash KS, Ketheesan N. Requirements for a robust animal model to investigate the disease mechanism of autoimmune complications associated with ARF/RHD. Front Cardiovasc Med. 2021;8:675339. doi:10.3389/fcvm.2021.675339
49. Breed ER, Binstadt BA. Autoimmune valvular carditis. Curr Allergy Asthma Rep. 2015;15:491.