Redian新闻
>
现代数学的几何分类
avatar

现代数学的几何分类

trivial
楼主 (文学城)

作为数学传统三大分支的分析,几何,代数,在任何应用到数学的领域,都是不可分割的部分。下面我查了目前数学界通用的subject classification, 关于几何的主要在51 Geometry 和52 Convex Geometry discrete geometry, 14 Algebraic geometry and 53 Differential geometry.  这些方向包罗很广,基本上要到大学高年级才能进入特殊的专业。高中的所有数学课,和大学的calculus series, linear algebra, 甚至differential eqn, 都是打基础的必修课。 

其中我们以前在中学学的欧式平面几何(全等,共圆,内心,外心等),现在确实在一个比较孤立的位置。我找了半天,可能归类于51M04和51M05非常小的两类。后面的学习和应用几乎用不到这些。普遍意见是这些内容可以不教了。

昨天看大家在提computational geometry。 这个词我比较陌生,查了一下,这个是CS中的分类。数学分类是按内容,而computational geometry 是说方法,设计algorithm 来解决问题。如果发在数学期刊的话,第一分类应该是看它处理的是什么专题。 

下面是51 Geometry / 52 convex geometry and discrete gemometry 的单子。14 (Algebraic geometry) /53 (Differential geometry) 基本上都是研究生以上的内容,也太长, 就不抄了。感兴趣的见https://mathscinet.ams.org/mathscinet/msc/pdfs/classifications2020.pdf

(51/52单子在回帖)

avatar
STEMkid
2 楼
真正的学术大拿来了
avatar
凊荷
3 楼


问了一下我家的专家哈,他说对他最有用的是拓扑

avatar
追求平凡
4 楼
数学家,就等你出来搞科普。
avatar
randomness
5 楼
但是数学对大多数人来说其实是一种思维训练。平面几何属于这类吧。真不教了,中学生就更不学无术了

比起微积分,平面几何对普通学生来说还是更有用些。

avatar
STEMkid
6 楼
连 coffee mug 和 donut 都分不清的,能有啥用
avatar
追求平凡
7 楼
你知道还问我?
avatar
凊荷
8 楼
哈哈

这两个我家的能分清吧。

他说这个最有用

https://en.m.wikipedia.org/wiki/Geometric_topology

 

avatar
篱笆08
9 楼
多好啊,兄贵一石激起千层浪,把各种大拿都震出水面了。正好阳春三月,百花齐放总是春。

avatar
trivial
10 楼
51 的分类

51-XX Geometry {For algebraic geometry, see 14-XX; for differential geometry, see 53-XX}

51Axx Linear incidence geometry

   51A05 General theory of linear incidence geometry and projective geometries

   51A10 Homomorphism, automorphism and dualities in linear incidence geometry

   51A15 Linear incidence geometric structures with parallelism

   51A20 Configuration theorems in linear incidence geometry

   51A25 Algebraization in linear incidence geometry [See also 12Kxx, 20N05]

   51A30 Desarguesian and Pappian geometries

   51A35 Non-Desarguesian affine and projective planes

   51A40 Translation planes and spreads in linear incidence geometry

   51A45 Incidence structures embeddable into projective geometries

   51A50 Polar geometry, symplectic spaces, orthogonal spaces

   51A99 None of the above, but in this section 

51Bxx Nonlinear incidence geometry

 51B05 General theory of nonlinear incidence geometry

 51B10 M¨obius geometries

 51B15 Laguerre geometries

 51B20 Minkowski geometries in nonlinear incidence geometry

 51B25 Lie geometries in nonlinear incidence geometry

 51B99 None of the above, but in this section

51Cxx Ring geometry (Hjelmslev, Barbilian, etc.)

 51C05 Ring geometry (Hjelmslev, Barbilian, etc.)

 51C99 None of the above, but in this section

51Dxx Geometric closure systems

 51D05 Abstract (Maeda) geometries

 51D10 Abstract geometries with exchange axiom

 51D15 Abstract geometries with parallelism

 51D20 Combinatorial geometries and geometric closure systems [See also 05B25, 05B35]

 51D25 Lattices of subspaces and geometric closure systems [See also 05B35]

 51D30 Continuous geometries, geometric closure systems and related topics [See also 06Cxx]

  51D99 None of the above, but in this section

51Exx Finite geometry and special incidence structures

 51E05 General block designs in finite geometry [See also 05B05]

 51E10 Steiner systems in finite geometry [See also 05B05]

 51E12 Generalized quadrangles and generalized polygons in finite geometry

 51E14 Finite partial geometries (general), nets, partial spreads

 51E15 Finite affine and projective planes (geometric aspects)

 51E20 Combinatorial structures in finite projective spaces [See also 05Bxx]

 51E21 Blocking sets, ovals, k-arcs

 51E22 Linear codes and caps in Galois spaces [See also 94B05]

 51E23 Spreads and packing problems in finite geometry

 51E24 Buildings and the geometry of diagrams

 51E25 Other finite nonlinear geometries

 51E26 Other finite linear geometries

 51E30 Other finite incidence structures (geometric aspects) [See also 05B30]

 51E99 None of the above, but in this section

51Fxx Metric geometry

 51F05 Absolute planes in metric geometry

 51F10 Absolute spaces in metric geometry

 51F15 Reflection groups, reflection geometries [See also 20H10, 20H15] {For Coxeter groups, see 20F55}

 51F20 Congruence and orthogonality in metric geometry [See also 20H05]

 51F25 Orthogonal and unitary groups in metric geometry [See also 20H05]

 51F30 Lipschitz and coarse geometry of metric spaces [See also 53C23]

 51F99 None of the above, but in this section

51Gxx Ordered geometries (ordered incidence structures, etc.)

 51G05 Ordered geometries (ordered incidence structures, etc.)

 51G99 None of the above, but in this section

51Hxx Topological geometry

 51H05 General theory of topological geometry

 51H10 Topological linear incidence structures

 51H15 Topological nonlinear incidence structures

 51H20 Topological geometries on manifolds [See also 57-XX]

 51H25 Geometries with differentiable structure [See also 53Cxx, especially 53C70]

 51H30 Geometries with algebraic manifold structure [See also 14-XX]

 51H99 None of the above, but in this section

51Jxx Incidence groups

 51J05 General theory of incidence groups

 51J10 Projective incidence groups

 51J15 Kinematic spaces

 51J20 Representation by near-fields and near-algebras [See also 12K05, 16Y30]

 51J99 None of the above, but in this section

51Kxx Distance geometry

 51K05 General theory of distance geometry

 51K10 Synthetic differential geometry

 51K99 None of the above, but in this section

51Lxx Geometric order structures [See also 53C75]

 51L05 Geometry of orders of nondifferentiable curves 

 51L10 Directly differentiable curves in geometric order structures

 51L15 n-vertex theorems via direct methods

 51L20 Geometry of orders of surfaces

 51L99 None of the above, but in this section

51Mxx Real and complex geometry

 51M04 Elementary problems in Euclidean geometries

 51M05 Euclidean geometries (general) and generalizations

 51M09 Elementary problems in hyperbolic and elliptic geometries

 51M10 Hyperbolic and elliptic geometries (general) and generalizations

 51M15 Geometric constructions in real or complex geometry 

 51M16 Inequalities and extremum problems in real or complex geometry {For convex problems, see 52A40}

51M20 Polyhedra and polytopes; regular figures, division of spaces [See also 51F15]

 51M25 Length, area and volume in real or complex geometry [See also 26B15]

 51M30 Line geometries and their generalizations [See also 53A25]

 51M35 Synthetic treatment of fundamental manifolds in projective geometries (Grassmannians, Veronesians and their generalizations) [See also 14M15]

 51M99 None of the above, but in this section

51Nxx Analytic and descriptive geometry

 51N05 Descriptive geometry [See also 65D17, 68U07]

 51N10 Affine analytic geometry

 51N15 Projective analytic geometry

 51N20 Euclidean analytic geometry

 51N25 Analytic geometry with other transformation groups

 51N30 Geometry of classical groups [See also 14L35, 20Gxx]

 51N35 Questions of classical algebraic geometry [See also 14Nxx]

 51N99 None of the above, but in this section

51Pxx Classical or axiomatic geometry and physics [Should also be assigned at least one other classification number from Sections 70 through 86]

 51P05 Classical or axiomatic geometry and physics [Should also be assigned at least one other classification number from Sections 70 through 86]

 51P99 None of the above, but in this section

avatar
avw
11 楼
这是杂志投稿的分类?
avatar
tibuko
12 楼
太深了,普通人学点欧式几何,装修房子够用了
avatar
成功的燕子
13 楼
高手在民间

此言不虚

avatar
trivial
14 楼
52 的分类 (我都copy 累了。这些好像是和CS最相关的)

52-XX Convex and discrete geometry

52-00 General reference works (handbooks, dictionaries, bibliographies, etc.) pertaining to convex and discrete geometry

52Axx General convexity

 52A01 Axiomatic and generalized convexity

 52A05 Convex sets without dimension restrictions (aspects of convex geometry)

 52A07 Convex sets in topological vector spaces (aspects of convex geometry) [See also 46A55]

 52A10 Convex sets in 2 dimensions (including convex curves) [See also 53A04]

 52A15 Convex sets in 3 dimensions (including convex surfaces) [See also 53A05, 53C45]

 52A20 Convex sets in n dimensions (including convex hypersurfaces) [See also 53A07, 53C45]

 52A21 Convexity and finite-dimensional Banach spaces (including special norms, zonoids, etc.) (aspects of convex geometry) [See also 46Bxx]

 52A22 Random convex sets and integral geometry (aspects of convex geometry) [See also 53C65, 60D05]

 52A23 Asymptotic theory of convex bodies [See also 46B06]

 52A27 Approximation by convex sets 52A30 Variants of convex sets (star-shaped, (m, n)-convex, etc.)

 52A35 Helly-type theorems and geometric transversal theory

 52A37 Other problems of combinatorial convexity

 52A38 Length, area, volume and convex sets (aspects of convex geometry) [See also 26B15, 28A75, 49Q20]

 52A39 Mixed volumes and related topics in convex geometry

 52A40 Inequalities and extremum problems involving convexity in convex geometry

 52A41 Convex functions and convex programs in convex geometry [See also 26B25, 90C25]

 52A55 Spherical and hyperbolic convexity 52A99 None of the above, but in this section

52Bxx Polytopes and polyhedra

 52B05 Combinatorial properties of polytopes and polyhedra (number of faces, shortest paths, etc.) [See also 05Cxx] 

 52B10 Three-dimensional polytopes 52B11 n-dimensional polytopes

 52B12 Special polytopes (linear programming, centrally symmetric, etc.)

 52B15 Symmetry properties of polytopes

 52B20 Lattice polytopes in convex geometry (including relations with commutative algebra and algebraic geometry) [See also 06A11, 13F20, 13F55, 13Hxx, 52C05, 52C07]

 52B22 Shellability for polytopes and polyhedra

 52B35 Gale and other diagrams 52B40 Matroids in convex geometry (realizations in the context of convex polytopes, convexity in combinatorial structures, etc.) [See also 05B35, 52Cxx]

 52B45 Dissections and valuations (Hilbert’s third problem, etc.)

 52B55 Computational aspects related to convexity {For computational methods, see 52-08; for computational geometry and algorithms, see 68Q25, 68U05; for numerical algorithms, see 65Yxx} [See also 68Uxx]

 52B60 Isoperimetric problems for polytopes 52B70 Polyhedral manifolds

 52B99 None of the above, but in this section

52Cxx Discrete geometry

 52C05 Lattices and convex bodies in 2 dimensions (aspects of discrete geometry) [See also 11H06, 11H31, 11P21]

 52C07 Lattices and convex bodies in n dimensions (aspects of discrete geometry) [See also 11H06, 11H31, 11P21]

 52C10 Erd?os problems and related topics of discrete geometry [See also 11Hxx]

 52C15 Packing and covering in 2 dimensions (aspects of discrete geometry) [See also 05B40, 11H31]

 52C17 Packing and covering in n dimensions (aspects of discrete geometry) [See also 05B40, 11H31]

 52C20 Tilings in 2 dimensions (aspects of discrete geometry) [See also 05B45, 51M20]

 52C22 Tilings in n dimensions (aspects of discrete geometry) [See also 05B45, 51M20]

 52C23 Quasicrystals and aperiodic tilings in discrete geometry

 52C25 Rigidity and flexibility of structures (aspects of discrete geometry) [See also 70B15]

 52C26 Circle packings and discrete conformal geometry

 52C30 Planar arrangements of lines and pseudolines (aspects of discrete geometry)

 52C35 Arrangements of points, flats, hyperplanes (aspects of discrete geometry) [See also 14N20, 32S22]

 52C40 Oriented matroids in discrete geometry 52C45 Combinatorial complexity of geometric structures [See also 68U05] 52C99 None of the above, but in this section 1

avatar
追求平凡
15 楼
我当你助手,给一条 AMS Mathematical Reviews link就好:

http://www.ams.org/publications/math-reviews/math-reviews

avatar
trivial
16 楼
投稿时给个大概类别就行。这算检索的分类吧。
avatar
里鱼
17 楼
有用即真理大炮。一句话总结,小孩子 学编程,一代数,二线代,三微积分

是家长责任范围内能做的。再多,就是孩子自己将来的选择了。

 

这是基础的基础。连搞AI都够了。

 

当然,stem孩子,数论排列组合等离散数学是少不了。

竞赛哇估计还是要学中学的“高级”几何.

 

avatar
追求平凡
18 楼
拓扑学
avatar
yesterday*once*more
19 楼
是时代进步了。。。

以前我的初中数学老师,是村里唯一能用平面几何和立体几何来解释所有木匠的工具和操作原理的。所有木匠只会用,手脚飞快,但不知道解释。。。

现在回去,木匠们都改行了--好木匠竞争不过机器,也老了,干脆就不干了;新一代木匠都是装修,尺子一量,计算机上画好图,去公司定好成型的部件,找两个民工,度不用自己动手。。。

avatar
randomness
20 楼
数学家们互相能看懂别人的研究吗?隔一个分类还能懂吗?
avatar
trivial
21 楼
分类里这几个几何后面就是拓扑了,两者是一个大类。也是数学系专业课才接触得到
avatar
yesterday*once*more
22 楼
儿时的朋友

儿时的朋友  (2011-08-03 06:51:01)下一个

(一)

一个月前给妹妹打电话,聊起妈妈耳朵感染的事情。妹妹说刚去地区一级的医院找专科医生看了。还特别提起帮忙的是我小时候的朋友,他自己亲自开着车来接送俺娘。

“他自己亲自。。。?”我脑子转不过来了。我来了兴趣,追问起细节。

妹妹笑笑说:“喔,忘了告诉你,他也快到千万级的富豪了。。。”我有点难以置信。

一个生产队的,他比我还小一点呢。还依然记得他妈妈出世的那天:乡下农村的七月是农忙季节,双抢,要抢收早稻,抢插晚稻。男劳动力和年青的女同胞们都泡在种水稻的泥地里,中年妇女们在禾场里忙着把收割上来的稻子晒干入仓。毒毒的太阳下,湖南的夏天是蒸笼啊。俺娘和他娘一起在禾场里忙乎着。到中午他娘看着看着就不行了,但家里成份高,咬牙也得顶着。实在不行了,对我娘说:梅姐,我不行了,发痧(中暑)了,得回家。你帮我招呼一下吧。(她比俺娘长一辈,但一直随孩子叫俺娘的。)

从禾场到家就几百米。有人看见她真病了,马上传话让他父亲回家。又去请赤脚医生,可惜都晚了--农村没有电,没有冰,活生生的一个人,到家一个小时,就留下爷儿三,撒手走了,留下了那句老头子一辈子都不忘记的话:聋子,你要帮我看好两个儿子!

老头子耳朵有点背,我们小孩子私下也叫老头子“聋子爷爷”。聋子爷爷在夏天的傍晚常来我家坐,乘乘凉,拉拉家常。依然记得聋子爷爷经常说的故事:“有天晚上睡觉,孩子她娘打了我一下,说:聋子,聋子,快起来!猪到菜园里了。我赶紧起来一看,还真是猪从猪栏里跑出来了。”

还有一个常说的故事:“小儿子有天不听话,我揍了他一顿。晚上睡觉,孩子他娘很很打了我一拳,让我以后再不许打孩子了。”聋子爷爷说话声音大,但从故事里总是能感觉到那一丝抹不去的思念和淡淡的忧伤。

日子慢慢地过着。老大是有名的聪明人,先学了木匠,再结婚成家,自己盖好了房子分出来了,留下父亲和弟弟在老房子里。等到我离开老家上大学后,就断断续续听母亲说老二也开始学木匠了。每年夏天回家,难得见到他一面。只是聋子爷爷还常见到。还是那样的大声说话,还是那样爽朗。孤独而执傲的老人也一直没有再娶。

“哥,”妹妹在电话里把我的思绪拉回了现实:“他学木匠出师后,赶上了好时候。国内这些年房子造得多,需要装修的也多,成就了一批有头脑的木匠。他自己开业给房子装修,大多是他自己设计,在计算机上画好,再找生产厂家订作家具一类。开始是他自己干,现在只自己作图纸,安装是雇人干的。我家里上次装修,他还亲自上门来呢,那是很给我面子的。。。”

是啊,中国的户籍制度曾经让考大学成了农村孩子的独木桥。千军万马,我是少数几个挤过了桥的人。多少年来一直就盼望着中国什么时候能把这个不公平的制度取消。听到这个没有过桥的儿时朋友有今天,心里有一种莫名的兴奋和感慨。

没有一种社会制度能让所有人过上好日子。但一个好的制度能尽量让所有孩子有同等的机会。但愿明天的中国会更好。

avatar
trivial
23 楼
第一看隔多远,第二看本人水平。 据说希尔伯特是最后一个全才。
avatar
凊荷
24 楼
没错

娃就是数学专业的。

avatar
追求平凡
25 楼
再加点离散数学(组合数学,数论基础,etc.)更香。没发现微积分有啥用。
avatar
trivial
26 楼
现在的很多内容是我们上学时不太普遍的

discrete geometry中就有很多初等的问题,可以不需要太多准备知识。

教学总是要与时俱进。 几何刚开始的时候大家都死磕尺规作图,磕了几百年。 现在还有谁真的熟悉那些吗?

avatar
trivial
27 楼
谢谢
avatar
追求平凡
28 楼
数学专业未必会去用AMS Subject Classifications,除非搞研究。
avatar
成功的兔
29 楼
感动人心,泪湿眼眶……百姓故事徐徐道来,你的博客可以结集出版
avatar
trivial
30 楼
用coordinate system 算几何问题一直都在用。这个是实用中的平几,立几吧
avatar
Numero
31 楼
赞严谨

计算数学(computational  mathematics)专业有一个研究方向是几何(或者叫计算几何,计算图形)

研究生才涉及到。。。

 

avatar
里鱼
32 楼
搞AI比如深度神经网络学习等等,要用到。小孩子很多

开始在做AIProject,需要这东西。

 

stem娃现在做这个很流行,他们觉得很cool

 

 

 

avatar
凊荷
33 楼
具体我不清楚

不是搞数学研究

avatar
恒妈
34 楼
解析几何解决复杂物理有限元,可靠度及统计花街, AI 两者都用
avatar
凊荷
35 楼
感人!朋友的哥哥没机会上大学

浙江很穷的地方。

现在靠雕刻观音塑像的手艺,也赚的非常多

avatar
Numero
36 楼
有限元

也是computational mathematics的一个方向

计算数学跟计算机名字相似,差别很大

 

avatar
zaocha2002
37 楼
AI也会需要? 瞎猜
avatar
凊荷
38 楼
这个叫

应用数学。

avatar
Numero
39 楼
目前

没听说过

avatar
zaocha2002
40 楼
学习中
avatar
Numero
41 楼
反正不是基础数学,也可以

这么叫,每个学校叫法不同,有的把它归到应用数学里

avatar
恒妈
42 楼
高难度AI 最需要有限元了
avatar
zaocha2002
43 楼
神经学?

网格

avatar
Numero
44 楼
此网格

彼网格

avatar
凊荷
45 楼
数学在工程中的应用么

就是应用数学。有限元就最典型了

avatar
trivial
46 楼
属于numerical analysis 的?

数学分类里,computational geometry 和computer graphics 归在Numerical Analysis 下面。

 

avatar
zaocha2002
47 楼
好像搞FEM有个HUGHES 大拿 还是mechanical engineering ,应该算应用力学?
avatar
Numero
48 楼
嗯,也最古老 :))
avatar
zaocha2002
49 楼
哈哈,所以瞎猜,连民科都不算
avatar
恒妈
50 楼
我理解它的基础是分析几何,没有这个基础,数字分析要花一百年
avatar
Numero
51 楼
工程软件方面,包括FEM,力学是不可缺少的知识,包括流体力学,材料力学
avatar
zaocha2002
52 楼
如果真这样,要捡书本看能不能

学习一下上AI的船

avatar
追求平凡
53 楼
数值分析
avatar
Numero
54 楼
LOL 我也只局限于自己的那一小块 嘿嘿
avatar
恒妈
55 楼
谢更正
avatar
追求平凡
56 楼
数学分析(mathematical analysis)与数值分析是非常不同的分支。
avatar
青裁
57 楼
你忘记概率统计了
avatar
青裁
58 楼
这位我没记错的话,吹牛是十几年的数据专家,连微积分在CS的应用都不知道,叹为观止
avatar
里鱼
59 楼
我女儿是跟着AOPS 学的,已经学完了初级和中级的counting and probality。上大学前应该是够用

顺便提一句,好像这个坛子大家不在same page. 


 

avatar
恒妈
60 楼
不懂什么是数学分析,只知道线性代数,解析几何,差分方程,统计及可靠度
avatar
恒妈
61 楼
查了一下,还有复变函数糸列,应该是变相的解析几何
avatar
trivial
62 楼
复变应该非常不同于解析几何了
avatar
追求平凡
63 楼
数学分析是一门大学纯数学专业的必修的基础课。

内容有点象微积分(各level的微积分课程加一起)但注重理论证明。

跟着就是实变函数论、泛函分析等一众(数学)专业课。

avatar
Numero
64 楼
数学系的都要学

至少我们那个时候是这样,这是基础课

我们不是纯数学,数学分析,实变复变泛函都要学

avatar
GOPer
65 楼
有限元是数学工具,软件一大堆,力学、结构、场域分析最基本的东西,也成AI的高大上了
相关阅读
数学水平能遗传吗?能,甚至还有“代数基因”和“几何基因”|环球科学要闻当临床医生与网络观点不一致怎办?liver fibrosis stage 2这张照片陈大将带着拐杖,其中有5位元帅,七位大将,二位大将站在第二排,近三十位上将,近五十位中将。古巴印像 (1) 美丽的哈瓦那我今天也有小小的milestone2023年4月8日历史上的今天哪个少年不多情, 哪个少女不怀春在城头看到晓青的博文“又是一年清明节”非常感动。她很幸运。得到了那么多的爱。是一个真正富养大的女孩。三大件,手表自行车缝纫机, 在黄泛区农场的拥有水平很高ICLR 2023 | DM-NeRF:从2D图像中实现3D场景的几何分解与编辑(已开源)美国自行车冠军Ethan Boyes出事拒绝了,但有点不舒服兰德公司政策报告?看似兰德公司也被共军渗透啦~!!现在铺地板一般都是通铺,没有压条的吗?《魅羽活佛》第316章 病鱼展厅普大最近短短一段时间,自杀4个(3本1研)。学校里压力难道真有那么大?请教电工专家安装smart switch出的问题【冯站长之家】2023年4月8日(周六)三分钟新闻早餐2023年4月8日价格早报上海首例!两男子破解无人机禁飞限高牟利获刑【冯站长说安全】2023年4月8日2023年4月8日(周六)冯站长之家三分钟晚间新闻上网的目的。宾州吉姆索普(Jim Thorpe),漂亮街景看到下面说好高中出来的娃到了大学还有压力要当top,想想我们破普高出来的,压根没往那边想啊搞不懂为什么中土医院不做PET唱两首中英纽约歌,和洋君, 纫秋兰的poem《纽约春/秋》2023年4月8日物联网新闻“地球人”,请你大声点我给出真实数字请大家再看看看电视连续剧《县委大院》闲聊看谍战剧无间的子丑寅卯向高级文明汇报一下低级的逻辑:指出汉语有独特性不等于拒绝西方;也不等于认为汉语第一;跟政治更没有关系。美国宾州葛底斯堡国家军事公园,纪念墓碑2023年4月8日中国各领馆美国签证预约最新时间!冬天的乐趣-Parc Omega野生动物园。郭德刚的看病梗这里有不少人对数学很感兴趣,但对这一学科的了解,比较其他学科而言,打卡542023年4月8日医疗晨报各位家里娃挣$40万的,如果单身是不是都交税了
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。