Redian新闻
>
如何证明天才:注脚的数量和质量

如何证明天才:注脚的数量和质量

公众号新闻

至少在科学上,一个人不要怕反对:如果确实正确,反对的人越多越好

天才的注脚有五种:

一种是做了研究而不知道分析,不能得出正确的结论;

一种是忽视科学的突破;

一种是反对正确的结论;

一种是否定突破,认为不稀奇;

一种是说自己也有同样的突破,而其实没有搞懂真正的突破。

一个人,如果获得以上其中一种,就很幸运。而五种都遇到,那就是万幸。

天才如孟德尔,就遭遇了所有五种。而且注脚们前赴后继从1729年至1900年接近两百年蜂拥而至。


孟德尔之前有没有人做过豌豆杂交实验?孟德尔时代的科学家如何理解遗传?孟德尔时代的科学家如何理解孟德尔?孟德尔之后第二伟大遗传学家如何理解孟德尔?

我们可以讨论12位科学家:孟德尔之前做过植物杂交实验的六位(包括做豌豆杂交的五位)、孟德尔同代独立做过豌豆杂交的三位、孟德尔与其交流过杂交结果的Nägeli、自己独立做过杂交实验并得到同样结果的达尔文、和四十年后的摩尔根。

孟德尔之前科学家认识到植物有性别,用植物做杂交的实验也在孟德尔出生一百多年前就开始了。德国的Josef Gottlieb Kölreuter (1733-1806)和Carl Friedrich von Gärtner (1772-1850)系统地做过大量植物杂交实验。而孟德尔之前,至少有五位做过豌豆的杂交、一位做过获得类似结果的香瓜杂交实验。独立于孟德尔但发表时间稍后还有三位科学家做过豌豆的杂交实验。

英国神父Thomas Henchman (?1666-1746)于1729年的豌豆实验,观察到同一个豆荚可以含有蓝色和白色的豌豆。

英国的Thomas Andrew Knight (1759-1838),曾任皇家园艺学会主席,与达尔文有长期交流,杂交实验为达尔文的《物种起源》所引用。Knight主要目的的改良品种,特别是苹果。因为用苹果做实验慢,而自1787年他就开始用过豌豆做杂交实验。他选豌豆的原因是其不同形态、大小、颜色,而且是开花模式不容易被昆虫和外来花粉所污染。1799年就发表了他的实验方法,去除雄的部分几天后引进另外的花粉。断断续续到孟德尔出生的第二年(1823年)还发表了豌豆杂交的实验结果。1799年他报道观察到的结果:白色豌豆的后代都是白的;而如果花粉来自有颜色(灰或紫)父本,即使母本为白色,后代也都有颜色(灰或紫);灰色总是可以传后代,即使母本为白色。

1822年8月20日,皇家园艺学会宣读了苏格兰的Alexander Anderson Seton(1769-1850)的研究结果。他观察到绿豌豆和白豌豆杂交的后代为绿豌豆。

1822年10月15日,皇家园艺学会宣读了英国农民John Goss(1787-1833)投寄的研究结果。他报道:1820年夏杂交白色豌豆(西班牙矮)与蓝色豌豆(普鲁士蓝)杂交,后代为白色豌豆;杂交以上豌豆,得到的豌豆,在同一个豆荚里,可以全部是蓝色,全部白色,或者蓝和白都有;以上蓝色豆荚的豌豆与蓝色的豌豆杂交,后代全部是蓝色,而以上白色的与白色杂交,后代可以豆荚里面都是白色,或者白色和蓝色都有。

Seton和Goss的结果都刊出在1824年集结出版的第五卷《皇家园艺学会会志》。紧接着他们刊出的是1822年11月15日宣读的Thomas Andrew Knight有关培育西瓜方法的改进。同一卷杂志,还在后面刊出1823年6月3日Knight的实验结果。他发现,灰色豌豆与白色豌豆杂交后代为灰色,灰色再与“恒定习惯种类的白色”杂交后代有灰色,但也重新出现了白色。

法国植物学家Augustin Sageret(1763-1851)于1826年发表甜瓜与香瓜杂交的实验结果。他用的甜瓜种子是黄色的、瓜皮不平,而香瓜种子白色、瓜皮平滑。杂交后代的种子为白色、瓜皮不平。

德国植物学家Carl Friedrich von Gärtner(1772-1850)在1849年发表的书里面,有较多植物杂交的实验结果。其中,他观察到,黄色豌豆与绿色豌豆杂交的后代为黄色。

法国植物学家Charles Naudin(1815-1899)与孟德尔开始杂交实验是同一年(1854)。他开始是杂交报春花,发明了回交。1856年,他发表文章,观察到了杂交性状的自动回复,也观察到了性状的分离。1861年,他给法国科学院的报告(1863年刊出),提到后代的性状有些完全如父本、有些完全如母本,而不是中间状态。

十九世纪还有两位科学家的文章在孟德尔后面发表,但估计并不知道孟德尔的研究。Thomas Laxton(1830-1893)对英国豌豆品种改进有重要贡献,有以他命名的豌豆。1866年在国际园艺展和植物大会上,1872年在皇家园艺学会杂志上,他介绍了研究结果:白色的豌豆杂交紫色的豌豆,后代为紫色;白色的杂交棕色后代为棕色。荷兰的E Giltay(1858-1935)与1893年发表其豌豆杂交的实验结果:黄的与绿的后代为黄的。

以上为2022年疫情期间为《生物学概念与途径》第一章“孤独的天才”新加内容。还有少量修改也标注在附件:

1    孤独的天才


为坚持智力追求,不惜放弃其天伦之乐;

在学术群体外围,做出科学的核心发现;

用数学分析生物,成功地进行学科交叉;

十年一系列实验,一篇论文开创新学科。

他孤立于当时的科学界,做出奠基性突破却终生未被学界承认;他的工作几十年后尚不为同一学科的诺贝尔奖得主所理解;他发现的貌似简单的理论,大多数学过其结论的人,都没意识到其智力高度;他不是为利益做研究的纯粹科学家,身后却被疑造假,遭遇不公。

这位孤独的天才,就是自称为“实验物理学教师”的遗传学之父:孟德尔(Johann Gregor Mendel1822-1884)。

我认为,生物学有两座智力高峰:第一次是1854年至1866年孟德尔独自一人;第二次是1951年至1965年克里克(Francis Crick)及其合作者们。两个高峰碰巧相隔一百年。

今天重读孟德尔的论文,追寻孟德尔的思路,思考孟德尔的环境,仍然很有意义。



1.1    孟德尔的论文和思路

由于同时代理解孟德尔科学工作重要性的人极少,他的遗物保留下来的很少。孟德尔最重要的遗物是一篇遗传学论文。与此相关,他还有一篇遗传学论文以及给一位植物学家的10封信。他还有两篇有关作物害虫的论文。

他的主要论文显示了清晰的思路,有助于我们追踪科学是如何在一个头脑中诞生的。

孟德尔的时代,人们对遗传的认识还很粗浅,基本认同“混合遗传”(blending inheritance)学说:遗传是+=,父母的黑和白简单融合得到子代的灰。此学说虽未被正式提出和论证,却是一个普遍接受的、朴素的、以为不证自明的规律。

而孟德尔不以为然,他设计实验,通过锲而不舍的研究,发现了与此不同的学说。从1854年开始,孟德尔用豌豆做了一系列遗传学实验,时间长达十年。他于1865年公布所发现的遗传学规律,并于次年以德文在布鲁恩自然史学会杂志》发表了论文《植物杂交的实验》(Versuche über die Pflanzen-Hybriden)。

从孟德尔的文章,我们可以体会他如何做研究:发现重要问题,提出解决问题的途径;设计实验思路,进行实验研究;得到结果,分析结果,提出前人没有想到的理论;进一步实验,得到更多可以分析的结果;进而推广理论, 证明理论。

孟德尔的论文由十一部分组成。

引言部分,孟德尔简要回顾以往研究,指出Josef Gottlieb Kölreuter (1733-1806)和Carl Friedrich von Gärtner (1772-1850)等坚持做过大量杂交之后,立即明确提出问题:无人成功地提出过对杂交体形成和发生普遍适用的规律。

他指出前人做过不少杂交实验,但未得到普遍规律是因为所需的工作不仅量大,而且较难。孟德尔认为需要考虑到:规模要相当大;具有不同型的杂交后代要定量分析;在不同代间要准确地知道不同型之间的关系;要确切地分析它们之间的相对数量关系。

他写道:需要勇气花力气做大量实验,这是唯一正确的道路,才能最终解决重要的问题。..本文就是仔细研究的结果,进行了八年的工作得出的结论。

孟德尔说的八年,是他收集论文所用数据的八年。其实,此前,他做了两年实验,摸索条件选择最佳材料。所以实际上,论文工作进行了十年。十年实验后,又隔两年才发表论文。论文发表后,他还用其他植物做过几年研究。

实验植物选择部分,孟德尔指出:任何实验的价值和用处取决于所用材料是否符合其目的,所以选什么植物和怎么做实验并非不重要必须特别小心地选择植物,从开始就避免获得有疑问的结果。

他选的植物首先具有恒定的分化特征;其次,在进行杂交的时候不会受到外来花粉的污染;另外,每一代杂交后代生殖力不能变。

孟德尔所谓分化特征现在称为性状(如高矮、颜色);他的恒定是指同一性状在不同代之间不变;他注意避免外来花粉污染,怕不确切知道父本,研究结果无从分析;他还注意代间生殖力无变化,减少在性状数量分析时的干扰。

后人认为,为了选择到合适的实验材料,孟德尔有可能考虑过二十多种植物。孟德尔说他因为花形状的奇异而试了豆科(Leguminosae),后决定用豌豆(Pisum)。对所用豌豆的确切生物学分类,孟德尔并不是很确定,说专家意见说大多数是Pisum sativum,还有几种,不过他明确指出分类对其研究并不重要。

用豌豆还有论文中没说明的、实验操作的优点:既能自花授粉,又能异花授粉,较易人为控制。1854年和1855年,孟德尔试过34种不同的豌豆。在孟德尔为数不多的遗物中,有一张1856年购买豌豆的订单。

实验分工和安排中,孟德尔对所研究的性状进行了选择:他选择成对的性状,研究他们在代间的传递规律。这些性状可以在代间稳定遗传,且易于识别和区分。

杂交体的外形部分,他进一步说明了对性状的选用。他专门选择子代性状一定相同于父本或母本的性状,而不是介于父母之间、或其他变异。孟德尔知道豌豆有些性状居于父母本之间,而不等同于父本、或母本,例如,在论文第八部分,他发现杂交体的开花时间介于父母本之间,但孟德尔没有研究介于父母本性状之间的性状。他研究的7对性状,一定是与父本或母本相同,每对中必定有一种传到下代,而一对性状的两种在后代不会变化,也不会永远消失。孟德尔明确这样选择的重要性。

孟德尔的选择简化了分析从而可以得出有意义的结论。比如到2017年知道,有八百多个基因决定人的高矮,子代高矮是父母这些基因及其含有的更多多态性综合结果,另外还有环境因素(如食物)等。如果谁在十九世纪研究人身高的遗传,就很难得出简单的规律,这并非人类高矮不符合孟德尔遗传规律,而是很难进行分析。

他选了7对性状:种子形状(平滑或皱褶)、种子颜色(黄或绿)、种皮颜色(紫或白)、豆荚形状(鼓或狭)、豆荚颜色(紫或白)、花的位置(顶或侧)、茎的高度(长或短)。

对应于7对性状,孟德尔安排了7个实验。实验一用15株植物做了60次授粉;实验二用10株植物做了58次授粉;实验三用10株植物做了35次授粉;实验四用10株植物做了40次授粉;实验五用5株植物做了23次授粉;实验六用10株植物做了34次授粉;实验七用10株植物做了37次授粉。

所有实验,孟德尔都进行了双向杂交:一对性状中如种子颜色的黄和绿既做过父本黄、母本绿,也做过父本绿、母本黄,他发现亲本来源不影响这些性状的传代。

他认识到性状有显隐之分,发明了显性dominant)和隐性recessive)两个词。当父本母本分别是不同性状(如黄和绿),而他们杂交子代只显现一种性状(黄)时,孟德尔称显现的一种(黄)为显性、没有显现的(绿)为隐性。他指出,隐性在杂交体(以后称为F1代)看不见,但在以后可以完全不变地重新显现。进一步的实验表明:显性隐性与父本母本来源也无关。

他确定了7对性状的显隐性:种子形状平滑为显而皱褶为隐、种子颜色黄为显而绿为隐、豆荚颜色黄为显而绿为隐、豆荚形状鼓为显而狭为隐、花色紫为显而白为隐、花的位置顶为显而侧为隐、茎的高度长为显而短为隐。任何实验中都没有过渡型式

我们现在知道,其实在两年的预实验中,孟德尔实际上得到了纯合子。虽然当时并无纯合子和杂合子的概念,他本人也未明确这样说,但如果不以纯合子开始实验,分析结果会很复杂。

在孟德尔所谓杂交体来的第一代实验结果部分,我们稍需改变他的称呼,以方便叙述。他用的第一代,我们现在称为F0代。他所谓“杂交体”,我们现在称F1代。他称杂交体来的第一代,现称F2代。

我们可以看到,他用不同表型的两种F0亲本间授粉得到的F1均表现显性的性状,比如,豌豆种子分别为平滑和皱褶的F0代父母本授粉得到的F1代的豌豆种子都是平滑的,没有皱褶的。

接着,他让F1代自花授粉,得到F2代,发现隐性(如皱褶)没有因为在F1代不表现而永远消失,它重新出现在F2代。进一步数量分析表明,在F2代,显性对隐性呈3:1的比例。孟德尔强调,3:1比例毫无例外地适用于所有(7对)性状。其中,实验一发现:从253F1代杂交体得到7324F2代种子,其中5474颗平滑,1850颗皱褶,比例为2.96:1。实验二发现:258F1代植物产生了8023F2代种子,其中6022颗种子黄色,2001颗绿色,比例为3.01:1

孟德尔还分析每个豆荚内种子形状和颜色是否有关,不同植物是否有关,结果认为都无关。他指出如果算的植物少了,比例漂移很大;如果昆虫损害了种子,也会影响对性状的确定。

从实验三到实验七,他列出了其他5对性状的传代结果,发现7对性状平均显隐比例为2.98:1。他看到了规律:F1100%为显性;F2代隐性重现,而且有规律,显隐比例3:1

孟德尔知道隐性没有在F1代不表现而消失,所以知道混合学说不对。至此,他已经超出一般人,而他还继续迈出了后面三步,发现31的比例、探究对比例的解释、用实验验证解释,从而获得了新的理解,远远超过了同时代的其他生物学家,包括所有时代最伟大的科学家之一。

孟德尔在看到3:1的比例后,他分析在F2代显性的性状可以有两种意义,它可以是F0一样(自交后保持与亲代的显性性状),或是F1代(自交后既有显性性状的后代、也有隐性性状的后代)。只能用F2代再做一代实验来检验是哪种状况。他预计,如果F2F0一样,那么其后代性状就应该不变,而如果F2代类似F1杂交体状态,那么其行为与F1相同。

由此,引出孟德尔下一年的实验,即他所谓杂合体来的第二代(我们现称F3代)部分结果。他发现,表现隐性性状的F2代,传F3代后其性状不再变化(总是隐性表型)。而表现显性的F2代,其F3代结果表明:2/3F2代是杂交体(其F3代出现3:1的显性和隐性),而另外1/3F2代其F3代都是显性表型。


实验一:F2565棵平滑豌豆植株,193F2代只产生平滑的F3种子,372F2代生平滑和皱褶的F3种子(F3的平:皱比例为3:1)。也就是说,F2代中显性的其实含类似F0和类似F1的比例为1.93:1

实验二:F2519棵黄色种子的豌豆植株自交后,166株只生黄色种子的F3代,353生黄和绿种子(黄:绿为3:1),F2代中表现显性的植株含类似F0和类似F1的比例为2.13:1

从实验三到实验七算其他五种性状时,孟德尔没有每次都算全部后代性状,而只分析100株植物的后代,结果有漂移但大体相似。他说计算数量大的实验一和实验二更有意义。实验五漂移最大,他重复了一次,数字更趋接近预计比例。

这样,孟德尔将F23:1中的3,进一步分成213:1就被分解成1:2:1(显性恒定:杂交体:隐性恒定)

F3代后,他还做了几代杂交体后几代,发现结果都符合F3代前所发现的规律,没有察觉任何偏移。到发表论文时,实验一和二做了六代,实验三和七做了五代,实验四、五、六做了六代。可以算出,他用豌豆做了17610次授粉。

孟德尔再迈进了一步:数学模型。

生物学研究用数学的较少。即使是今天,虽然有些生物学家非常需要定量,但绝大多数生物学研究者关心数量只在乎升高、降低和不变。孟德尔以数量分析、定量不同表型的植物,从而发现3:1的规律,继而推出和验证1:2:1的规律,已经使他成为在生物学领域成功运用数学的先驱。

在以上基础上,孟德尔进一步用了数学模型。这就超出不仅那时、甚至包括今天绝大多数生物学研究者。他提出,用A表示恒定的显性,a表示恒定的隐性,Aa表示杂合体。那么F2代就是:A+2Aa+a

他观察到的F21:2:1就符合这个数量关系(杂合性状为2,显性和隐性恒定性状皆为1)。

分别分析单个性状传代情况后,孟德尔研究了不同对的性状间是否有关系。在几个分化性状相关联杂交体的后代部分,孟德尔发现7对性状之间完全独立。比如种子是平滑还是皱褶,与种子是黄色还是绿色毫无关联。总结这部分实验结果,孟德尔说:每对不同性状之间的关系独立于亲本其他不同(性状)。

后人好奇,为什么孟德尔做的7对性状都无关?如果有些基因在染色体较近位置的话,会有一定关联。现在知道,他做的7对性状,其基因分别在4条染色体上,而在同一染色体上的三个正好分别在染色体上相距很远的位置。

孟德尔在发现各对性状独立传代后,他在文章中可能考虑了自己的发现与进化论的关系。我们现在知道,他读过第二版《物种起源》德译本,在书的边缘做了评注。可能由于自己在修道院吃饭,他不能公开说接受进化论,所以在论文中完全没提进化论。但是,他文章故意讨论了性状独立遗传的意义。他指出:如果一个植物有7种不同的性状,产出后代就有27次方(128)种不同的组合。孟德尔的这个算法其实解决了 “混合学说给达尔文进化论造成的矛盾。混合学说导致每一代比上一代更少样(黑加白得到灰,灰加灰得此灰,以此类推),而不是多样,可供选择的越来越少,生物应该退化。而孟德尔推出不同组合的数量很多,每代的多样性在增加,进化就有很多可以选择。

行文至此,孟德尔简要总结了结果:分化性状在杂交组合中行为完全一模一样。每对分化性状杂交体的后代,一半又是杂交体,另外一半中含同等比例的亲本恒定分化性状。(这等于是他用文字复述1:2:1的发现)。如果不同分化性状在杂交时组合起来,每对分化性状成为组合系列。

孟德尔也认为通过研究他选择的性状所得到的规律,也适用于其他的性状。

在从外观的性状上推出规律后,孟德尔推断外观的差别实际是由生殖细胞的组成的差别所造成。原因在于雄性的花粉细胞,雌性的卵细胞。

他推理:因为总是当卵细胞和花粉细胞具有同样的恒定性状(显性纯合子或隐性纯合子)时,其后代得到同样的恒定性状(显性或隐性纯合子),所以此时两种细胞都有创造同样个体的物质。我们必须认为在杂交体(显性和隐性杂合子)授粉后出现恒定性状(显性或隐性纯合子)时,也是这样。“杂交体的卵巢中卵细胞的种类,或杂交体雄蕊中花粉细胞数量,与可能的恒定组合型式相同,卵细胞和花粉细胞的内在组分与其不同外形相符”(斜体为本文所加)。

如果F0代是恒定的显性,其生殖细胞应该内含A的花粉细胞和内含A的卵细胞。如果F0代表型是恒定隐性,其生殖细胞应该内含a的花粉细胞和内含a的卵细胞。F0代花粉细胞和卵细胞交配后,得到F1代。F1代的花粉细胞有Aa两种、且数量相等,卵细胞也有数量相等的Aa两种。在F1代自交时,各自含Aa的两类花粉细胞与各自含Aa的卵细胞交配后,不同花粉细胞有同等机会与不同的卵细胞组合,那么得到的下代就有:A/AA/a,a/Aa/a等四种。其中AaaA个体不同只在于其显性隐性来源不同,一个来源卵细胞,一个来源花粉细胞,但最后表型相同,可以归为Aa。这样,F2就应该是A+2Aa+a

F1代产生F2代可以表示为:

A/A+A/a+a/A+a/aA+2Aa+a

孟德尔这个等式很重要。他将等式左边性细胞内的成分和右边得到植物后代的表型连起来。左边是我们现在说的基因型,右边是表型。孟德尔从表型的1:2:1推导出生殖细胞遗传物质的组成。他依据的是观察到的表型,推测生殖细胞的情形。

孟德尔说明这是平均的结果,具体每个后代有多种可能,而且随机,所以分开的实验肯定有漂移,只有大量收集数据,才能得到真实的比例。在这里,我们可以猜想孟德尔意识到了纯合子A/Aa/a和杂合子A/a a/A,可惜没有明确提出名词。

至此,他把理论深入到生殖细胞,而且可以用数学模型表示遗传学的规律,虽然其数学虽然简单,是很基本的组合。数学分析结合生物学实验,产生很重要的意义,揭示了遗传的规律。

因为孟德尔希望找到普遍适用的规律,所以,他论文最后一部分实验是其他种属植物杂交体的实验,检验他从豌豆发现的规律是否适用于其他植物。在论文发表时,他说开始用了几种其他植物,其中用大豆做的两个实验已经做完。用Phaseolus vulgarisPhaseolus nanus(两者都是菜豆)做的杂交结果, 发现后代好几个性状的传代完全吻合符合他从豌豆得到的规律。但是,用Ph nanusPh multiflorus做杂交时,其花色有较多变异。孟德尔觉得花色仍符合他发现的遗传规律,提出要假设花色是两个或更多独立颜色的组合,花色A由单个性状A1+A2+…..的组合而成。他实际上提出了多基因遗传,而通常误解导致“孟德尔遗传学”被误认为单基因遗传学。

孟德尔经过新颖的、严谨的、长期的实验和定量分析,终于找到了杂交发育的普适规律。后人将孟德尔发现的规律表述成为两个定律:第一个是分离律,决定同一性状的成对遗传因子彼此分离,遗传给后代,也可以表述为颗粒遗传,以区别于以前流行的混合学说,说明因子没有消失;第二个是自由组合律,确定不同遗传性状的遗传因子间可以自由组合(本章省略了孟德尔原文研究不同性状ABC之间的关系部分)。虽然这些内容在原文中都有叙述,孟德尔本人并不认为自己发现了两个分开的规律,而是一个普遍的规律。

结语部分,孟德尔介绍前人杂交实验的结果和前人有关植物受精过程的论述。他指出:根据著名生理学家的意见,植物繁殖时,一个花粉细胞和一个卵细胞结合成为单个细胞,同化和形成多个新细胞,长成植物个体。

然后孟德尔提出:(杂交体)发育遵循一个恒定的定律,其基础就是细胞中生动地结合的因子的物质组分和安排(material composition and arrangement of elements)”豌豆的胚胎毫无疑问是亲本两种生殖细胞中因子的结合。如果生殖细胞是同类的,那么新个体就像亲本植物如果杂交后代不同,必需假设卵细胞和花粉细胞的分化因子间出现妥协,形成作为杂交体基础的细胞,但矛盾因子的安排只是暂时的,分化的因子在生殖细胞形成时可以自我解放。在生殖细胞形成时,所有存在的因子完全自由和平等地参与,分化的因子互相排斥地分开。这样,产生卵细胞和花粉细胞的种类在数量上相同于形成因子可能的组合数量。

将孟德尔原文的“因子”换成现代的“基因”,就可以几乎原封不动地以他的文字理解遗传。对于喜欢直观的人来说,还有一个总结孟德尔的简单方法是:A/A+A/a+a/A+a/a

孟德尔文中六次复述相似的内容:豌豆杂交形成生发细胞和花粉细胞,其中的组成数量相同于通过授粉将性状组合起来的所有恒定型式。这也表明他知道遗传的基础在于生殖细胞中存在数量相应于性状的物质。

1870927日,孟德尔给植物学家Nägeli的信中明确用anlage(德文原基)描述遗传因子,也说明他对基因的理解与现在很接近。

孟德尔早年研究过老鼠毛发颜色的遗传,被要求停止:修道院不宜做动物交配。他自己做道长后,1871年在花园建蜂房,用蜜蜂做过实验,但未见报道蜜蜂遗传结果,所以没有将植物中发现的规律推广到动物。

1.2    其他科学家对遗传学的理解

孟德尔之前有没有人做过豌豆杂交实验?孟德尔时代的科学家如何理解遗传?孟德尔时代的科学家如何理解孟德尔?孟德尔之后第二伟大遗传学家如何理解孟德尔?

我们可以讨论15位科学家:孟德尔之前做过植物杂交实验的六位(包括做豌豆杂交的五位)、孟德尔同代独立做过豌豆杂交的三位、孟德尔与其交流过杂交结果的Nägeli、自己独立做过杂交实验并得到同样结果的达尔文、和四十年后的摩尔根。

孟德尔之前科学家认识到植物有性别,用植物做杂交的实验也在孟德尔出生一百多年前就开始了。德国的Josef Gottlieb Kölreuter (1733-1806)和Carl Friedrich von Gärtner (1772-1850)系统地做过大量植物杂交实验。而孟德尔之前,至少有五位做过豌豆的杂交、一位做过获得类似结果的香瓜杂交实验。独立于孟德尔但发表时间稍后还有三位科学家做过豌豆的杂交实验。

英国神父Thomas Henchman ?1666-1746)于1729年的豌豆实验,观察到同一个豆荚可以含有蓝色和白色的豌豆。

英国的Thomas Andrew Knight (1759-1838),曾任皇家园艺学会主席,与达尔文有长期交流,杂交实验为达尔文的《物种起源》所引用。Knight主要目的的改良品种,特别是苹果。因为用苹果做实验慢,而自1787年他就开始用过豌豆做杂交实验。他选豌豆的原因是其不同形态、大小、颜色,而且是开花模式不容易被昆虫和外来花粉所污染。1799年就发表了他的实验方法,去除雄的部分几天后引进另外的花粉。断断续续到孟德尔出生的第二年(1823年)还发表了豌豆杂交的实验结果。1799他报道观察到的结果:白色豌豆的后代都是白的;而如果花粉来自有颜色(灰或紫)父本,即使母本为白色,后代也都有颜色(灰或紫);灰色总是可以传后代,即使母本为白色。

1822820日,皇家园艺学会宣读了苏格兰的Alexander Anderson Seton1769-1850)的研究结果。他观察到绿豌豆和白豌豆杂交的后代为绿豌豆。

18221015日,皇家园艺学会宣读了英国农民John Goss1787-1833)投寄的研究结果。他报道:1820年夏杂交白色豌豆(西班牙矮)与蓝色豌豆(普鲁士蓝)杂交,后代为白色豌豆;杂交以上豌豆,得到的豌豆,在同一个豆荚里,可以全部是蓝色,全部白色,或者蓝和白都有;以上蓝色豆荚的豌豆与蓝色的豌豆杂交,后代全部是蓝色,而以上白色的与白色杂交,后代可以豆荚里面都是白色,或者白色和蓝色都有。

SetonGoss的结果都刊出在1824年集结出版的第五卷《皇家园艺学会会志》。紧接着他们刊出的是18221115日宣读的Thomas Andrew Knight有关培育西瓜方法的改进。同一卷杂志,还在后面刊出182363Knight的实验结果。他发现,灰色豌豆与白色豌豆杂交后代为灰色,灰色再与“恒定习惯种类的白色”杂交后代有灰色,但也重新出现了白色。

法国植物学家Augustin Sageret1763-1851)于1826年发表甜瓜与香瓜杂交的实验结果。他用的甜瓜种子是黄色的、瓜皮不平,而香瓜种子白色、瓜皮平滑。杂交后代的种子为白色、瓜皮不平。

德国植物学家Carl Friedrich von Gärtner1772-1850)在1849年发表的书里面,有较多植物杂交的实验结果。其中,他观察到,黄色豌豆与绿色豌豆杂交的后代为黄色。

法国植物学家Charles Naudin1815-1899)与孟德尔开始杂交实验是同一年(1854)。他开始是杂交报春花,发明了回交。1856年,他发表文章,观察到了杂交性状的自动回复,也观察到了性状的分离。1861年,他给法国科学院的报告(1863年刊出),提到后代的性状有些完全如父本、有些完全如母本,而不是中间状态。

十九世纪还有两位科学家的文章在孟德尔后面发表,但估计并不知道孟德尔的研究。Thomas Laxton1830-1893)对英国豌豆品种改进有重要贡献,有以他命名的豌豆。1866年在国际园艺展和植物大会上,1872年在皇家园艺学会杂志上,他介绍了研究结果:白色的豌豆杂交紫色的豌豆,后代为紫色;白色的杂交棕色后代为棕色。荷兰的E Giltay1858-1935)与1893年发表其豌豆杂交的实验结果:黄的与绿的后代为黄的。

孟德尔寄出40份论文单行本给不同科学家,其中,只有瑞士著名植物学家、慕尼黑大学教授Nägeli回了信。所以,40人中Nägeli最重视孟德尔。孟德尔不仅给Nägeli寄了论文,而且他们还交换了植物种子。孟德尔自己提出用山柳菊做实验验证豌豆中发现的规律,得到研究山柳菊的专家Nägeli的鼓励。孟德尔信中说过种子少、不容易授粉、自己时间少。1867116日他给Nägeli的信还说老天让我过度肥胖,使我不再适合做植物园户外工作 他得到结果有点慢,不知情的会以为他在找借口、磨洋工。等他把山柳菊实验做完后,发现不符合豌豆里面得出的规律。孟德尔在信中告诉Nägeli山柳菊的结果和豌豆的矛盾,但自己还做了其他植物,紫罗兰、茯苓、玉米和紫茉莉,发现结论和豌豆一样,所以山柳菊比较特殊,而自己发现的规律适用于多数植物。Nägeli不为所动,尽管孟德尔写过很多信告诉他辛辛苦苦做的实验,Nägeli发表植物学重要著作时,一字不提孟德尔的工作。正确地解释山柳菊结果要等到1904年,山柳菊是单性繁殖(所谓孤雌生殖),所以不能父本母本杂交,而遗传规律其实和豌豆相同。

仅以Nägeli的例子,还不能说孟德尔是超越时代的天才,而比较达尔文更说明问题。



1859年,达尔文发表《物种起源》提出了进化论,其核心是:“如果出现对生物生存有利的变异有此特性的个体就一定会有最佳的机会在生存斗争中保存下来;这些个体在强大的遗传原理中倾向于产生有类似特性的下一代。我把这一保存原理,或适者生存,称为自然选择。”如何遗传是达尔文自然选择进化论的必要支柱,达尔文非常希望了解遗传学。

神学对达尔文的攻击虽然猛烈,但非理性。而有人提出了严厉而富有逻辑的理性批评:自然选择进化论违背当时人们理解的遗传规律共识。根据“混合学说”,生物的性状黑加白得到后代灰,灰加灰出现的后代次灰,依此类推,性状越来越单调,不存在很多可供选择的性状,因此没有物竞天择的物质基础。所以,达尔文急需遗传学说为进化论提供解释和支持。但是,遗传规律在他眼皮底下溜过去了。

达尔文从Thomas Laxton那里知道豌豆杂交实验的结果。1868年,达尔文引用Laxton的结果,称白色的与有色的豌豆杂交后代失去白色种类的特征,无论父母本何者为白色。1876年,达尔文引用Laxton的新结果,豌豆杂交后代的活力。

与一般人印象不同,达尔文不仅依赖观察来推导理论,引用其他人的实验观察,自己也做过实验。达尔文用花做了十一年的实验,部分结果先于孟德尔于1862年以论文形式发表,主要结果发表于1876年和1877的两本书中,也散在于其他书中。

1868年,达尔文发表《动植物在家养情况下的变异》。此书记录了达尔文用金鱼草做的实验。常见金鱼草的花是双侧对称(达尔文称common型式,我们表为大写C),但偶尔也会出现一些怪怪的金鱼草变种,其花呈现辐射对称(达尔文称peloric型式,我们表为小写p)。达尔文把具有p性状的父本与具有C性状母本进行杂交,发现所得后代(F1代)全部呈现C性状。进一步授粉得到127F2代金鱼草中,88株具有C性状,37株具有p性状,2株介于两种性状之间。他的实验到此结束。

观察到实验结果后,达尔文的结论是:同种植物里有两种相反的潜在倾向,第一代是正常的占主要,隔一代怪的倾向增加。

这样的结论没有太大意义,远不如孟德尔深刻,即使不做实验的人们也能通过生活经验得到直观的常识

达尔文不止一次失去机会。在1877年的《同种植物不同花型》一书中,从他总结的报春花研究结果的表格中,我们可以看到,他用杂合体授粉时,得到显性后代为75%,隐性为25%,一个完美的3:1。不过,达尔文还是没有意识到其重要性,再次与现代遗传学失之交臂。

在《动植物在家养情况下的变异》中,达尔文提出了错误的泛生论(pangenesis)。他提出生物体全身体细胞都产生泛子gemmules(后人亦称pangenes),进入性细胞中,这些gemmules组合决定了性细胞内含,形成不同的性细胞,再产生不同的后代。在强调体细胞产生泛子的重要性时,达尔文说生殖能力要么不全在于生殖细胞,要么生殖细胞没有生殖能力,而是收集和选择泛子。他论述此假说时,将代间遗传、植物嫁接、发育、再生等多种现象混在一起谈,认为有同样机理。他的讨论相当于混淆了我们现在知道的细胞全能性(很多细胞本身含有整套遗传物质)、与代间遗传两个不同层次的问题。他在讨论中接受拉马克主义的“用进废退”,而认为泛生假说能解释用进废退,受外界影响的体细胞性状可以获得并通过gemmules进入性细胞而传代。现代科学表明,生物体中无泛子。后人从pangenesis这个词中抽出了gene来表示基因。

对比孟德尔的实验和推理,可以看到达尔文的问题:1)达尔文没有意识到样本量太小,实验设计有问题,没有做到孟德尔论文很前面就提到的“从开始就避免获得有疑问的结果”;2)达尔文在获得F1代的结果看到都是C性状时,和其他做杂交实验观察到同样现象的人一样,没有提出显性和隐性的概念;3F2代重新出现F1代不见了的p性状,达尔文也仅看到现象,提出所谓“回复原理”(Principle of Reversion)复述现象,并无原理;4)在F2得到数量时,他没算两种性状的比例(2.38:1),也不知道比例蕴含的意义;5)没有推测而发现下一步的1:2:16)没有数学模型;7)没有从实验结果中发现规律,提出错误的遗传理论。

我们不知道达尔文是否读过孟德尔的文章。有些人认为,假如达尔文读了,也读不懂,或者不能接受孟德尔的理论。我们知道孟德尔在达尔文1860年第二版《物种起源》的德译本上有批注。孟德尔1866年的论文有时好像是他希望给达尔文的进化论提供遗传基础。孟德尔从自己发现的多个性状自由组合规律,推算如果有7对不同性状的两种植物间授粉,可以产生很多不同的组合,从而解释了多样性。孟德尔很可能在1866年就想到了自己发现的规律对于进化论的意义。当然,孟德尔当时的实验没有考虑进化论还需要的一部分:变异如何出现。要等七十年后,到1930年代后,英国的费舍尔(Ronald A Fisher1890-1962)和霍尔丹(JBS Haldane1892-1964)、美国的莱特(Sewall Wright1889-1988)杜布赞斯基(Theodosius Dobzhansky1900-1975)等才成功地将孟德尔遗传学和达尔文进化论结合起来。

一般教科书说三位科学家1900年重新发现孟德尔:德国的Carl Correns (1864-1933)、荷兰的Hugo de Vries (1848-1935) 和奥地利的Erich von Tschermak (1871-1962),虽然von Tschermak已被遗传史学家排除在重新发现者之外。这几位所谓重新发现孟德尔的人,理解程度当时都还低于孟德尔。de Vries重新写数学公式不如35年前孟德尔的公式。三人的工作量加起来也远不如孟德尔一人。CorrensNägeli的学生和亲戚,推动了对孟德尔的认识。英国的William Bateson (1861-1926) 对孟德尔学说的推广起了很大作用。

第二伟大的遗传学家,无疑是美国的摩尔根(Thomas H. Morgan1866-1945)。但是,直到1909年,摩尔根还发表文章称孟德尔的方法是玩数字的高级杂耍(superior jugglery)。事实上,摩尔根当年不仅不信孟德尔,也不信遗传的染色体学说。是1910年他自己发现了白眼突变果蝇的事实后,他也做了和孟德尔一样的交配实验,取得数据和比例。为了解释事实,摩尔根不得不沿着孟德尔的思路,也提出因子,也进行拼凑数字的“高级杂耍”,最后奠定了遗传学的现代基础。在事实面前,摩尔根不得不出尔反尔,因为科学真理高于个人偏见,也不会败于俏皮话的讥笑挖苦。

Nägeli的狭隘、达尔文的缺憾、摩尔根的态度,给孟德尔的超前程度提供了绝佳的注释。

1.3    孟德尔的生平

孟德尔出生地德文称Heinzendorf,捷克称Hyncice现在捷克境内,当时属于奥匈帝国。孟德尔的父亲是佃农,每周四天料理自家的田地,三天给一位女伯爵干农活。命运似乎注定了孟德尔不得不子承父业,终其一生在农田中度过,但当地的神父Johann A.E. Schreiber 1769-1850鼓励孟德尔的父母让他多受教育。孟德尔自己也要与命运抗争,并得妹妹的支持。孟德尔后来为报答妹妹的支持,资助了她的孩子读书。

1850417日,他为了考教师证以第三人称写过一个自我简介,清楚地说明了他的情况、心境和决心,信的大意是:

小学后,1834年他上中学。4年后,接连不断的灾难[译注:一次是他父亲事故受伤],使他父母完全不能支持他学业所需的费用。因此,16岁的他落入不得不完全自己支持自己的可悲境地。所以,他一边给人做家教,一边上学。1840年中学毕业时,首要问题是取得必要的生活来源。因此,他曾多次试图做家庭教师,由于没有朋友和推荐,未果。失去希望和焦虑的痛苦、未来前景的悲观,彼时对他有强烈影响,导致生病,被迫和父母待了一年。次年,他努力后得以做私人教师,以支持学业。通过极大努力后,他成功地修完两年的哲学。他意识到无法这样继续下去,所以在学完哲学后,他觉得非得进入一个生命驿站,能让自己脱离痛苦的生存挣扎。他的境况决定了他的职业选择。

1843年,他要求并得以进入布鲁诺的圣汤玛斯修道院。从此,他的物质境况彻底改变。有物质生活的舒适后,他重新获得勇气和力量。他满心欢喜和集中精力学习经典。空余时间忙于修道院一个小型植物和矿物收藏。有机会接触后,他对自然科学的特别爱好更加深化。虽然缺乏口头教育,而且当时教学方法特别困难,从此他却更依附于自然研究。他努力通过自学和接受有经验者的教诲,来弥补自己的缺陷。1845年,他到布鲁诺哲学学院听了农业、园艺和葡萄种植课程。他很乐意代课,倾力以容易理解的方式教学生,并非无成效

孟德尔坦陈入修道院不是为了宗教信仰,而是经济原因。这一重要的人生选择中他权衡的不是神圣与世俗,而是智力追求与成家育子的权利。为了头脑,他舍弃了生殖权。对于血气方刚的青年,并非容易,而需要很大的决心。孟德尔的决定也和中国传统的一种说法(也是当代相当一部分华人的想法)不同:这些人读书是为了颜如玉,而孟德尔为了智力追求放弃颜如玉。

1843年,不满21岁的孟德尔进入布鲁恩Brünn现称Brno的圣汤玛斯修道院(the Abbey of St. Thomas),并于184725岁成为神父。孟德尔原名Johann,入修道院后加Gregor

到修道院后,他同时做过代课老师。那时,中学老师已需要证书。孟德尔第一次教师资格考试没通过,被送到维也纳大学去学习,这加强了他的科学背景。孟德尔曾再考教师资格,还是没能通过,而且,估计两次都是没过生物学,所以后来只能做代课老师,在当地的实科中学(Brünn Realschule教了14年低年级物理学和自然史。他一直以实验物理学教师自称,而不说是生物学家。

孟德尔积极参与学术活动。他长期研究气象,曾任国家气象和地磁研究所布鲁恩站长,1862年提交布鲁恩地区15年气象总结。他一生中参与了八个科学学会、二十六个非科学协会。1861年,孟德尔在任课的中学和一百多人共同创立当地的自然史学会。186528号和38号两个星期三的晚上,在布鲁恩自然科学学会,孟德尔宣读了豌豆研究结果。当地小报对孟德尔演讲有报道,但未能引起国际科学界的注意。

1866年论文发表后,孟德尔将40份抽印本寄给国际上的科学家,后人找到了13份的下落,传说达尔文处有,并未证实。发表文章的杂志有120本在世界主要图书馆。

1868年,修道院道长去世后,孟德尔经过两轮选举后当选道长。他不用教书后,但还有其他工作繁重,他还是尽量做了研究。他用了多种植物做遗传实验。留下的纸片表明在去世前三年,他还在想有关豌豆的遗传问题。1865年到1878年,他记录了14年的地下水位。1870年,他加入养蜂协会,1877年报告对蜜蜂飞行和产蜜量的四年观察。他曾研究苹果和梨的抗病性。在一些协会刊物中,他以MGM笔名写过一些短篇。

孟德尔生活丰富。他的政治观点偏自由派,与自己的教会背景矛盾。而他支持的自由派掌政时,出台的税收政策却对他的修道院很不利。政府为缓和与他争论曾安排他任银行副董事长和董事长。但他持续十年坚决反对税收,造成他晚年生活很大的苦恼。他在政治上左右碰壁。

188416日,孟德尔去世。他生前要求尸检,结果表明他肾炎并发心脏病。有位年轻的神父将其诗化,称孟德尔是心给伤了。孟德尔自己是乐天派,年纪大的时候回顾自己一生满意多于不满意。

园艺协会刊物讣告称:他的植物杂交实验开创了新时代 猜想讣告作者是刊物主编Josef Auspitz1812-1889),他曾任实科中学校长,支持孟德尔无证代课14年,是孟德尔的重要支持者和欣赏者之一。 但是,讣告的溢美之辞远非共识。

据他的朋友Gustav von Niessl (1839-1919)说,孟德尔生前相信我的时代会到来。确实如此。但是,要等他去世16年、理论公布34年以后。

1900年声称重新发现孟德尔的三位科学家。其中de Vries的第一篇论文没有提孟德尔,后来可能因为隐瞒不住曾借鉴孟德尔的事实(包括难以解释如果他没有读过孟德尔,为什么他第一篇文章用了孟德尔的dominantrecessive两个词),在第二篇论文中说是重新发现孟德尔。von Tschermak可能不懂孟德尔也说自己重新发现了孟德尔,所以史学家认为不能算。有趣的是,von Tschermak的外公 Eduard Fenzl1808-1879是维也纳大学教孟德尔的生物老师之一,不仅教学保守,也可能是没让孟德尔第二次考到教师证书的考官之一

1.4孟德尔“造假”案

除了有人说孟德尔不懂自己发现了什么以外,对于孟德尔最大的冤枉是说他编造了实验结果。英国统计学家和遗传学家费舍尔于1936年首先发难,他对孟德尔的实验数据进行统计分析后,断定孟德尔的数据过于接近理想数据。轻一点说,孟德尔可能有我们不知道的助手,在做了前两年实验导致孟德尔有理论后,助手为了满足孟德尔的理论而在后面几年给孟德尔提供他喜欢的数据。重一点说就很难听:多数如果不是所有的实验结果都伪造了,以期贴切地符合孟德尔的预期。以后每过一些年,就有人小聪明又发现孟德尔的问题

反击孟德尔造假说法的文章也不断。最近一篇较好的反击是2007年哈佛大学Hartl Fairbanks 发表于《遗传》杂志的文章。

我认为,给孟德尔伸冤的首要理由是:他无需造假。科学对于他来说不能带来利益。他如果造假,最对不起的是放弃生育人权、十几年如一日做研究的他自己。

其次,孟德尔时代没有统计学。统计学是几十年以后发明的。孟德尔只需分析数量关系,无需检验统计显著性。那时不知道应该做多少次实验、收集多少数据后才应该停止实验。可能是孟德尔收集到觉得差不多的就时候停止,所以数据会接近预计。孟德尔也在论文中明确说过,有一次实验漂移较远,他重复了实验后,数据更接近预计。

孟德尔的行为证明他不是造假和隐瞒不利结果的人。他曾努力使怀疑自己工作重要性的Nägeli相信自己发现的规律。但即使这种情况下,他也没隐瞒自己发现了有悖于自己理论的现象。他把自己的豌豆种子给了Nägeli和其他人,希望他们验证自己的结果。孟德尔致Nägeli信说:我观察到山柳菊的杂交行为与豌豆的正好相反。孟德尔用另外四种植物(紫罗兰、茯苓、玉米和紫茉莉)做的实验观察到其杂交行为都与豌豆一样。

孟德尔不仅在给Nägeli的信说明了山柳菊的结果,而且将结果在1869年发表了。后来多年认为,有两种遗传方式,一种是豌豆式(符合经典孟德尔学说),一种是山柳菊式(不符合孟德尔学说)。虽然以后也发现这些生物其实都符合孟德尔学说,造成困惑是因为山柳菊是单性遗传,但当时孟德尔以为山柳菊与豌豆不同。如果孟德尔造假,或选择只符合自己理论的结果,那么他就无需在已经公开自己的理论后,将只有他自己知道的山柳菊的结果直接告诉一位不愿接受自己理论的人,而且发表第二篇生物学论文,公布与第一篇的矛盾。

1.5孟德尔的精神遗产

孟德尔以天生的才能、青年的果断和壮年的坚持,在困难中成长,以放弃获得条件,在失败中得机遇,最终在有限的环境做出了超越时代的发现。

孟德尔的成就,一百多年来催生了多个现代科学学科。首先是直接导致遗传学诞生,而对于同时期诞生的进化论,孟德尔可能隐约知道自己工作的意义,虽然遗传学和进化论结合于1930年代。二十世纪遗传学与生物化学结合,并与微生物、生物物理学交叉,在1940年代又催生了分子生物学。1970年代诞生的重组DNA技术,全面改观了生命科学:分子生物学深入到从医学到农业各个领域,带来多个学科的变革,人类遗传学、基因组学、生物信息学是其直接传承。

在应用上,遗传学带来了二十世纪绿色革命,对于解决全人类食物起了很大作用。遗传学、分子生物学和重组DNA技术奠定了现代生物技术、产生了生物技术产业。现代遗传学和基因组学为个体化医学奠定了必不可少的基础,虽然我们今天还远未达到个体化医学的远景。

孟德尔的发现,对于科学和人类,今后长期还将有深远影响。

最后的问题是:既然孟德尔不受科学家重视,不为科学界所认同,那么,他怎么能获得做研究的条件?

这个问题,背后有一个更加鲜为人知的故事:欲知后事如何,请听下回分解……

1孟德尔用杂交一词,是现代意义的cross(动物可译成交配、植物授粉),而非后来科学家重新定义的“杂交”,即 不同种或不同品系之间的交配。孟德尔文章中多半都是同种植物的交配,并非物种或品系间的交配。杂交一词今天在中国学生和老师中仍未严格使用,部分原因可能是学孟德尔理论时听惯了杂交一词。

2:本文中斜体都是孟德尔原文的着重强调。

3:孟德尔的论文中用了对照实验control)一词。每个在野外做的实验,他都在暖房中也做了,证明野外实验未因昆虫或外源花粉等环境因素所干扰,结果可信,他才采用。

4:孟德尔用花粉细胞来表示精细胞。现在知道花粉中包含23个细胞。参与受精的是其中的两个精细胞。

5孟德尔在结语中说花粉细胞和卵细胞结合成单个细胞后,“同化和形成多个新细胞”。现在看来“同化”是错误的,限于当时对发育的误解。全部细胞都来源于受精卵分裂、增值,并不发生同化母体细胞参与子代发育。

参考文献

http://www.mendelweb.org/

Corcos A and Monaghan F (1985) Role of de Vries in the recovery of Mendel's work. I. Was de Vries really an independent discoverer of Mendel? Journal of Heredity 76:187-90.

Corcos AF and Monaghan FV (1987) Correns, an independent discoverer of Mendelism? I. An historical/critical note. Journal of Heredity 78: 330.

Corcos AF, Monaghan FV and Weber MC (1993) Gregor Mendel's Experiments on Plant Hybrids: A Guided Study, Rutgers University Press.

Correns C (1905)Gregor Mendel's Briefe an Carl Nägeli 1866-1873. Ein Nachtrag zu den veröffentlichten Bastardierungsversuchen Mendels. Abh. Math.-Phys. Classe Kgl. Sächs. Ges. Wiss. 29:189-265.

Darwin C (1859) On the Origin of Species by Means of Natural Selection. John Murray, London, England.

Darwin CR (1862) On the two forms, or dimorphic condition, in the species of Primula, and on their remarkable sexual relations. Journal of the Proceedings of the Linnean Society of London (Botany) 6:77-96.

Darwin C (1868) The variation of animals and plants under domestication. John Murray, London.

Darwin CR (1876)The effects of cross and self fertilisation in the vegetable kingdom. John Murray, London.

Darwin CR (1877)The different forms of flowers on plants of the same species. John Murray, London.

Dunn LC (1965) Mendel, his work and his place in history. Proceedings of the American Philosophical Society 109:189-198.

Ellis THN, Hofer JMI, Swain MT and Van Dijk, PJ (2019) Mendel’s peacrosses: varieties, traits and statistics. Hereditas 156:33.

Fairbanks DJ (2020) Mendel and Darwin: untangling a persistent enigma. Heredity 124:263-273.

Fisher RA (1936) Has Mendel’s work been rediscovered? Annals of Science 1: 115-137.

Galton D2009 Did Darwin read Mendel? Quarterly Journal of Medicine 102:587-589.

Gärtner CF (1849) Versuche und Beobachtungen über die Bastarderzeugung im Pflanzenreiche. K.F. Herring, Stuttgart, Germany.

Gasking EB (1959) Why was Mendel’s work ignored? Journal of Historical Ideas 20:60-84.

Giltay E (1893)Über den directen Einfluss des Pollens auf Frucht und Samenbildung. Pringsheim Jahrbücher für Wissenschaftliche Botanik 25:489-506.

Goss J (1822) On the variation in the colour of peas, occasioned by cross-impregnation. Transactions of the Horticultural Society of London 5:234-236.

Hartl DL and Fairbanks DJ (2007) On the alleged falsification of Mendel’s data. Genetics 175: 975–979.

Howard JC (2009) Why didn't Darwin discover Mendel's laws? Journal of Biology 8:15.

Iltis H (1924)Gregor Johann Mendel. Leben, Werk und Wirkung. Springer, Berlin. English translation by Eden and Cedar Paul (1932), W.W. Norton & Company, Inc. New York.

Iltis A (1954) Gregor Mendel’s autobiography. Journal of Heredity 45:231-231.

Knight TA (1799) An account of some experiments on the fecundation of vegetables. Philosophical Transactions of the Royal Society 89:195-204.

Knight TA (1823) Some remarks on the supposed influence of the pollen, in cross breeding, upon the colour of the seed-coats of plants, and the qualities of their fruits. Transactions of the Horticultural Society of London 5:377-204.

Mawer S (2006) Gregor Mendel: planting the seeds of genetics. Abrams NY, Fields Museum, Chicago.

Laxton T (1866) Observations on the variations effected by crossing in the color and character of the seed of peas. Report of the International Horticultural Exhibition and Botanical Congress 156. 

Laxton T (1872) Notes on some changes and variations in the offspring of cross-fertilized peas. Journal of the Royal Horticultural Society 3:10-14.

Mendel G (1953)Über Verwüstung im Gartenrettich durch Raupen (Botys margaritalis). Verhandlungen des Zoologisch-Botanischen Vereines in Wien 2:116-118.

Mendel G (1954)Über Bruchus pisi, mitgeteilt von V. Kollar. Verhandlungen des Zoologisch-Botanischen Vereines in Wien 4:27-28.

Mendel G (1866)Versuche über Pflanzen-Hybriden. Verhandlungen des naturforschenden Vereines, Abhandlungen, Brünn 4:3-47,英译本见Experiments in Plant Hybridization in Genetics: readings from Scientific American pp. 8-17. W.H. Freeman and Company, San Francisco-USA.

Mendel G (1869)Über einige aus künstlichen Befruchtung gewonnenen Hieracium-Bastarde. Verhandlungen des Naturforschenden Vereines, Abhandlungen, Brünn 8:26–31. (English translation: ‘‘On Hieracium hybrids obtained by artificial fertilisation.’’, Bateson, W., 1902 Mendel’s Principles of Heredity: A Defense. Cambridge University Press, Cambridge, UK)

Mendel G (1950) Gregor Mendel’s Letters to Carl Nägeli. Genetics 35:1-29. Gregor Mendel’s letters to Carl Nägeli (1866-1873) (Translated by Leonie Kellen Piternick and George Piternick)

Monaghan F and Corcos A (1986) Tschermak: a non-discoverer of Mendelism. I. An historical note. Journal of Heredity77:468-9.

Morgan TH (1909) What are “factors” in Mendelian explanations? American Breeders Association Reports 5:365-369.

Naudin C (1856) Constatation du retour spontané des plantes hybrides du genre Primula aux types des espèces productrices. Comptes Rendus de l’Académie des Sciences 42:625.  

Naudin C (1863) Nouvelles recherches sur l’hybridité dans les végétaux. Annales des Sciences Naturelles; Botanique Fourth Series 19:180-203.

Nogler GA (2006)The lesser-known Mendel: his experiments on Hieracium. Genetics 172:1-6.

Orel V (1996)Gregor Mendel the first geneticist. Oxford University Press.

Sageret A (1826) Considérations sur la production des hybrides et des variétés en général et sur celles des Cucurbitacées en particulierAnnales des Sciences Naturelles First Seiesr 8:294-313.

Seton A (1822) On the variation in the colour of peas from cross-impregnation. Transactions of the Horticultural Society of London 5:236-237.

Van Dijk PJ and Ellis THN (2020) Mendel’s journey to Paris and London: contextand significance for the origin of genetics. Folia Mendeliana 56:5-33.

Van Dijk PJ and Ellis THN (2022) Mendel’s reaction to Darwin’s provisional hypothesis of pangenesis and the experiment that could not wait. Heredity 129:12-16.

Van Dijk PJ, Jessop AP and Ellis THN (2022) How did Mendel arrive at his discoveries? Nature Genetics 54:926-933.

Van Dijk PJ, Weissing FJ and Ellis THN (2018) How Mendel’s interest ininheritance grew out of plant improvement. Genetics 210:347-355.

Weiling F (1991) Historical study: Johan Gregor Mendel (1822-1884).American Journal of Medical Genetics 40:1-25.

Zirkle C (1934) More records of plant hybridization before Koelreuter.Journal Heredity 25:3-18.

阅读

Mendel G (1866)Versuche über Pflanzen-Hybriden. Verhandlungen des naturforschenden Vereines, Abhandlungen, Brünn 4:3-47,英译本Experiments in Plant Hybridization in Genetics: readings from Scientific American pp. 8-17. W.H. Freeman and Company, San Francisco-USA.

饶毅 (2008) 一意孤行的伯乐

饶毅 (2008) 达尔文的泛生论

微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
华为云发布CodeArts Check代码检查服务,守护软件质量和安全【人人都能欣赏的数学证明】聚会握手问题风起敦煌,是《少年三国志》历久弥新的最好注脚没熬出头就不配穿合脚的鞋?!她就是第二个赵丽颖吧…影响精子质量和生育的一个问题,很多男性不知道中国代表出席女王葬礼像男人留辫女人裹脚从俄乌战争的导弹数量和台湾军费增长想到的埃及游记:寻找古希腊文明的线索嘲笑和质疑声中 川普“数字交易卡”一天内售罄莫名其妙多了兄弟!女子蒙了:我该如何证明我是独生女?【人人都能欣赏的数学证明】为什么0.9999999········=1在家翘脚的吞金兽,2岁到20岁完全没有变化3岁确诊脑瘫,10岁上一年级,15岁成数学天才:让孩子大脑开窍,这点就够了!湾区宠物弃养数量飙升,弃养兔子的数字超过猫狗【人人都能欣赏的数学证明】有没有一个最大的数?嘲笑和质疑声中,川普“数字卡”一天内售罄,价格翻倍拯救行动— 情深处终成眷属中国研究生课程仍需大幅度提高质量和深度:更待何时双十二了!网友太有才:假如李白也在等快递!超好穿的羽绒布拖鞋,软底、防滑、保暖,告别天冷冻脚的烦恼秋冬嘴唇干裂起皮?试试润到跺脚的“干燥终结者”,1支=润唇膏+唇膜!东条的“首塚”,战争泥潭拔不出脚的逻辑与心理海外华媒聚焦中共二十大:为世界读懂新时代中国增添注脚在嘲笑和质疑声中 特朗普“数字交易卡”一天内售罄美国三巨头Coach表现最差 减少中国库存质量和数量因恢复缓慢【竹海葱茏】卷一、童年记忆如何证明自己工作的原创性?竟然是由他给我上了一课【人人都能欣赏的数学证明】图形“证明”【人人都能欣赏的数学证明】整除判别法澳洲房价不断下跌,首次置业者:购房仍十分困难!贷款数量和金额下跌40%超好穿的羽绒布拖鞋,软底、防滑、保暖!告别冬天冻脚的烦恼~只有熬出头才能穿合脚的鞋子…她就是下一个赵丽颖吧?鸟界搞笑天才:小丑竟是我自己?一日一诗:记事簿上的黄山天都峰 / 健骨竦桀 | 罗广才:父亲的记事簿庆结婚35周年行(3):环游麦基诺岛
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。