Redian新闻
>
【进展中的科学】mRNA疫苗——免疫学的新纪元(第二部分)

【进展中的科学】mRNA疫苗——免疫学的新纪元(第二部分)

公众号新闻
原文《mRNA vaccines — a new era in vaccinology》这篇综述于2018年发表于期刊《Nature Reviews Drug Discovery》
https://www.nature.com/articles/nrd.2017.243

由”几只青椒“公众号翻译,分次发布


要点

  • 最近改进的mRNA疫苗,有助于增加蛋白质翻译、调节先天性和适应性免疫原性、改善递送。

  • 在流感病毒、寨卡病毒、狂犬病病毒等动物模型中,mRNA疫苗已引发对传染病靶标的有效免疫。尤其近年来,人们使用了脂质包封或裸的序列优化mRNA。

  • 多种方法mRNA癌症疫苗用于癌症临床试验,包括树突状细胞(DC)疫苗和各种类型的直接注入mRNA。结果显示,一些病例中出现抗原特异性T细胞反应,在某些情况下能延长患者的无病生存期。

  • 治疗中需要考虑的因素和挑战包括:扩大良好生产规范(GMP) 生产、制定法规、进一步记录安全性和提高疗效。


  • 未来重要的研究方向:比较和揭示各种mRNA疫苗激活的免疫路径,以此改进当前方法,并针对其他疾病靶点启动新的临床试验。


摘要

信使核糖核酸(mRNA)疫苗效能高、开发快,有潜力实现低制造成本、给药安全,因此有望替代传统疫苗。然而直到最近,由于mRNA不稳定、体内递送(in vivo delivery)低效,它的应用还很有限。这些问题,很大程度被最近的技术进步所解决,针对传染病和几种癌症的多种mRNA疫苗,在动物模型和人体实验中显现的结果令人鼓舞。本综述详细介绍mRNA疫苗以及将它推向普及治疗的未来方向和挑战。


正文提纲

一、mRNA疫苗药理学基础

二、mRNA疫苗技术的最新进展

1.mRNA翻译与稳定性的优化

2.免疫原性的调节

3.mRNA疫苗传递的进展

三、mRNA抗传染病疫苗

1.自扩增mRNA疫苗

2.树突状细胞mRNA疫苗

3.直接注入非复制mRNA疫苗

四、mRNA癌症疫苗

1.树突状细胞mRNA癌症疫苗

2.直接注入mRNA癌症疫苗

五、医疗考虑和挑战

六、结论和未来方向





mRNA抗传染病疫苗

开发针对传染性病原体的预防性或治疗性疫苗,是遏制和预防流行病的最有效手段。然而,针对引起慢性或反复感染的病毒,传统的疫苗方法在大都未能成功生产出有效疫苗。这些具有挑战性的病毒,比如有HIV-1,单纯疱疹病毒和呼吸道合胞病毒(RSV)。此外,商业疫苗开发和批准的缓慢步伐,不足以应对急性病毒性疾病的迅速出现,2014年到2016年埃博拉和寨卡病毒暴发就说明了这一点。因此,开发更有效和多功能的疫苗至关重要。

mRNA疫苗的临床前研究带来希望,它满足理想临床疫苗多方面要求:它们在动物中显示出良好的安全性,具有多功能性和快速设计用于新出现的传染病,并且适合可扩展的良好生产规范(GMP)生产(已经由几家公司进行)。与蛋白质免疫不同,几种形式的mRNA疫苗诱导强烈的CD8+T细胞反应,这可能是由于MHC I类分子上内源性产生的抗原的有效呈递,以及有效的CD4 + T细胞反应[56,87,88]。此外,有别于DNA免疫,mRNA疫苗仅通过一次或两次低剂量免疫就显示出在动物中产生有效的中和抗体反应的能力[20,22,85]。因此,mRNA疫苗在动物模型中引发了针对多种传染因子的保护性免疫[19,20,22,56,89,90],因此产生了极大的乐观情绪。然而,最近发表的两项用于传染病的mRNA疫苗临床试验的结果有些平庸(modest),这让人们对临床前成功转化为临床的预期更加谨慎[22,91](下文将进一步讨论)。

用于对抗传染性病原体RNA疫苗主要有两种:自扩增或复制RNA疫苗和非复制mRNA疫苗。非复制性mRNA疫苗可以通过其递送方法进一步区分:离体加载DC、直接体内注入到各种解剖部位。如下所述,最近在这些领域发表的临床前研究数量迅速增加,其中一些已进入人体临床试验(表2)。



表 2 抗传染病mRNA疫苗临床试验
Sponsoring institutionVaccine type (route of administration)TargetsTrial numbers (phase)Status
Argos TherapeuticsDC EP with autologous viral Ag and CD40L mRNAs (i.d.)HIV-1• NCT00672191 (II)
• NCT01069809 (II)
• NCT02042248 (I)
• Completed105
• Completed; results NA
• Completed; results NA
CureVac AGRNActive viral Ag mRNA (i.m., i.d.)Rabies virusNCT02241135 (I)Active56,91
Erasmus Medical CenterDC loaded with viral Ag mRNA with TriMix (i.nod.)HIV-1NCT02888756 (II)Recruiting
Fundació Clínic per la Recerca BiomèdicaViral Ag mRNA with TriMix (NA)HIV-1NCT02413645 (I)Active
Massachusetts General HospitalDC loaded with viral Ag mRNA (i.d.)HIV-1NCT00833781 (II)Completed104
McGill University Health CentreDC EP with autologous viral Ag and CD40L mRNAs (i.d.)HIV-1NCT00381212 (I/II)Completed102
Moderna TherapeuticsNucleoside-modified viral Ag mRNA (i.m.)Zika virusNCT03014089 (I/II)Recruiting85
Influenza virusNCT03076385 (I)Ongoing22


1.自扩增mRNA疫苗

目前使用的自我扩增mRNA(SAM)疫苗大多数基于甲病毒基因组[92]。它编码RNA复制机制的基因保持完整,但编码结构蛋白的基因被目的抗原取代。全长RNA长~9 kb,很容易通过IVT从DNA模板产生。抗原编码RNA在细胞内复制,因此可以从极小剂量的疫苗中产生大量抗原。一项早期研究报告称,在小鼠中,用编码RSV融合(F)、流感病毒血凝素(HA)或病病毒前膜和包膜(prM-E)蛋白的10μg裸SAM疫苗进行免疫,可产生抗体反应以及免受致命的病毒攻击的部分保护[93]。RNA络合剂的开发,让SAM疫苗的功效有了显著提高。仅100ng编码RSV F的RNA复制子疫苗与LNP络合,在小鼠中就能产生有效的T和B细胞免疫应答,并且在棉鼠鼻内攻击系统中引发针对RSV感染的保护性免疫应答[19]。在LNP或水包油阳离子纳米乳中编码流感病毒抗原的SAM疫苗,在雪貂中诱导了有效的免疫反应,并在小鼠中提供了对同源和异源病毒攻击的保护[94,95,96]。进一步的研究表明,该疫苗平台对多种病毒具有免疫原性,包括小鼠人巨细胞病毒(CMV)、丙型肝炎病毒和狂犬病病毒、兔子HIV-1以及恒河猴HIV-1和人CMV[50,87,97]。编码流感抗原的Replicon RNA与含壳聚糖的LNP或聚乙烯亚胺(PEI)复合,在皮下递送后引起小鼠的T细胞和B细胞免疫反应[98,99]。Chahal及其同事开发了一种递送平台,该平台由化学修饰的可电离树枝状聚合物络合到LNPs[89]。使用该平台,他们证明,肌内递送编码流感病毒、埃博拉病毒或刚地弓形虫抗原的RNA复制子可以保护小鼠免受致命感染[89]。同一小组最近证明,用编码寨卡病毒prM-E的RNA复制子以相同的方式配制的疫苗接种在小鼠中引起抗原特异性抗体和CD8+ T细胞反应[88]。最近的另一项研究报告了SAM疫苗对细菌病原体(即链球菌(A组和B组)属)的免疫原性和中等保护功效,进一步证明了该平台的多功能性[100]。

SAM疫苗的优点之一是它们产生自己的佐剂,这些佐剂的形式包括dsRNA结构、复制中间体和其他可能有助于其高效力的基序。然而,这些PAMP的内在性质,可能使得SAM疫苗的炎症特征或反应原性难以调节。此外,SAM疫苗的插入片段比无复制子基因的mRNA受到更多大小的限制,并且复制蛋白的免疫原性理论上可能限制重复使用

2.树突状细胞mRNA疫苗

如上所述,离体树突状细胞(DC)负载来产生细胞介导的癌症免疫,这种方法广受追捧。使用这种方法开发的传染病疫苗,主要限于HIV-1治疗性疫苗:接受高效抗逆转录病毒治疗的HIV-1感染者,用编码各种HIV-1抗原的mRNA电穿的自体DC(autologous DCs)进行治疗,然后评估细胞免疫反应[101-106]。该干预被证明是安全的,并引发了抗原特异性CD4+和CD8+ T细胞反应,但没有观察到临床益处。另一项针对人类的研究,评估了健康人类志愿者和同种异体干细胞接受者的CMV pp65 mRNA负载DC疫苗接种,并报告了CMV特异性细胞免疫反应的诱导或增加(induction or expansion)[107]。


3.直接注入非复制mRNA疫苗

直接注入非复制的mRNA疫苗,是一种有吸引力的疫苗形式,特别当资源有限,因为管理起来简单而经济。尽管一项早期报告表明,用编码流感病毒核蛋白的脂质体复合物mRNA免疫在小鼠中引起CTL反应[108],但仅在几年前才首次证明了mRNA疫苗对传染性病原体的保护性免疫反应[18]。这项开创性的工作表明,皮内施用编码各种流感病毒抗原的未复合物mRNA与鱼精蛋白复合RNA佐剂在多种动物模型中具有免疫原性,并保护小鼠免受致命的病毒攻击。

使用编码狂犬病病毒糖蛋白的基于鱼精蛋白的RNActive平台进行免疫,也诱导了对小鼠致命脑内病毒挑战的保护性免疫和猪的有效中和抗体反应[56]。在最近发表的一项开创性工作中,Alberer及其同事在101名健康志愿者中评估了这种疫苗的安全性和免疫原性[91]。受试者通过针头注射器或无针装置接受 三次80-640μg的mRNA疫苗(皮内或肌肉注射)。接种疫苗七天后,几乎所有参与者都报告了轻度至中度注射部位反应,78%的人经历了全身反应(例如发烧、头痛和发冷)。有一个严重的不良事件可能与疫苗有关:一过性和中度的贝尔麻痹病例(Bell palsy)。令人惊讶的是,针头注射器注射在98%的接受者中没有产生可检测到的中和抗体。相比之下,无针递送的诱导了不同程度的中和抗体,其中大多数所达到的峰值高于预期的保护阈值,但在长期随访的受试者中,1年后基本减弱。接受这种疫苗后动物和人类之间、两种递送途径之间的免疫原型都不同。对这两点不同的理解,将为未来使用该平台的疫苗设计提供信息。

其他传染病疫苗已经成功地利用了基于脂质或聚合物的递送系统。阳离子 1,2-二油酰氧基-3-三甲基丙烷铵(DOTAP)和二油酰磷脂酰乙醇胺 (DOPE) 脂质复合 mRNA 编码 HIV-1 gag 在小鼠皮下递送后产生抗原特异性 CD4+ 和 CD8+ T 细胞反应[109]。另外两项研究表明,PEI复合的mRNA可以有效地递送给小鼠以诱导HIV-1特异性免疫反应:皮下递送编码HIV-1 gag的mRNA引发CD4+和CD8 + T细胞反应,鼻内给药编码HIV-1包膜gp120亚基的mRNA穿过鼻上皮并在鼻腔中产生抗原特异性免疫反应[110,111]。Kranz及其同事还使用编码流感病毒HA的脂质复合mRNA,对小鼠进行了静脉内免疫,并在单次剂量后显示出T细胞活化的证据[59]。


核苷修饰的mRNA疫苗代表了一种新的、高效的mRNA疫苗类别。由于这种免疫平台的新颖性,我们对疗效的了解仅限于最近四篇发表结果,这些发表证明了,这种疫苗在小型和大型动物中的效力。第一份发表的报告表明,单次皮内注射编码寨卡病毒prM-E的LNP配方mRNA,用1-甲基假尿苷和FPLC纯化修饰,在猕猴中使用低至50μg(0.02mg kg-1)疫苗即可引起小鼠和恒河猴的保护性免疫反应[20]。另一个小组随后进行的一项研究,在小鼠中测试了一种类似设计的寨卡病毒疫苗,发现单次肌内免疫会引起中度免疫反应,而加强疫苗接种会产生有效和保护性的免疫反应[85]。该疫苗还掺入了修饰的核苷1-甲基假尿苷,但没有报告FPLC纯化或其他去除dsRNA污染物的方法。值得注意的是,该报告显示,通过去除E蛋白中的交叉反应表位,可以减少异源黄病毒继发感染的抗体依赖性增强,这是登革热和寨卡病毒疫苗的主要关注点。最近的一项后续研究在母亲疫苗接种和胎儿感染模型中评估了相同的疫苗[112]。两次免疫接种将胎儿小鼠的寨卡病毒感染率降低了几个数量级,并完全挽救了胎儿活力的缺陷。

最近的另一份报告评估了LNP复合、核苷修饰、非FPLC纯化的mRNA疫苗,在小鼠、雪貂、非人灵长类动物以及首次人类中针对流感HA 10神经氨酸酶8(H10N8)和H7N9流感病毒的免疫原性[22]。用低剂量(0.4-10μg)编码流感病毒HA的LNP复合mRNA进行单次皮内或肌肉内免疫,在小鼠中引起针对同源流感病毒攻击的保护性免疫反应。在用一剂或两剂含有编码HA的LNP复合mRNA的50-400μg疫苗免疫后,雪貂和食蟹猴(cynomolgus monkeys)获得了类似的结果,证实了mRNA-LNP疫苗在大型动物(包括非人灵长类动物)中的的效力转化。


基于这些令人鼓舞的临床前数据,最近启动了两项I期临床试验,以评估核苷修饰的mRNA-LNP疫苗在人体中的免疫原性和安全性。编码H10N8 HA的mRNA疫苗目前正在进行临床试验(NCT03076385),并报告了23名接种疫苗者的中期结果[22]。参与者肌肉注射少量(100μg)疫苗,并在接种疫苗后43天测量免疫原性。通过血凝抑制和微中和抗体测定法测量,该疫苗在所有受试者中均具有免疫原性。有希望的是,抗体滴度高于预期的保护阈值,但略低于动物模型。与Alberer等人的研究类似[91],大多数接种疫苗的受试者报告了轻度至中度的反应原性(注射部位疼痛,肌痛,头痛,疲劳和发冷),三名受试者报告了严重的注射部位反应或全身性普通感冒样反应。这种反应原性水平似乎与更传统的疫苗形式相似[113,114]。最后,Richner等人描述的寨卡病毒疫苗[85,112]也在I/II期联合试验(NCT03014089)中进入临床评估。未来应用核苷修饰的mRNA-LNP疫苗对抗更多样化的抗原的研究,将揭示该策略在多大程度上广泛适用于传染病疫苗。


mRNA癌症疫苗

对mRNA的癌症疫苗已有全面回顾[115-119]。下面重点介绍最新的进展和方向。癌症疫苗和其他免疫疗法有望替代现有治疗恶性肿瘤的方法。设计癌症疫苗,用来对抗在癌细胞中优先表达的肿瘤相关抗原(例如生长相关因子,或由于体细胞突变而对恶性细胞特有的抗原[120])。这些新抗原(neoantigens)或其中的新表位(neoepitopes)已被部署为人类的mRNA疫苗靶标[121](框2)。大多数癌症疫苗是治疗性的,而不是预防性的(prophylactic),寻求刺激细胞介导的反应(例如来自CTL的反应,这些反应能够清除或减轻肿瘤负担[122])。二十多年前,第一批概念验证研究发表,不仅提出了RNA癌症疫苗的想法,而且还提供了这种方法可行性的证据[123,124]。从那时起,许多临床前和临床研究已经显示mRNA疫苗对抗癌症的可行性(见文后 表 3)。

1.树突状细胞mRNA癌症疫苗

由于树突状细胞(DC)是启动抗原特异性免疫反应的核心参与者,因此很自然就想到把它们用于癌症免疫治疗。Boczkowski及其同事在1996年首次报道,用mRNA电穿孔的DC可以引发针对肿瘤抗原的有效免疫反应的证据(参考文献124)。在这项研究中,用卵清蛋白(OVA)编码的mRNA或肿瘤衍生RNA脉冲的DC在小鼠表达OVA和其他黑色素瘤模型中引起肿瘤减少的免疫反应。已经以mRNA编码佐剂的形式鉴定出多种免疫调节蛋白,可以增加DC癌症疫苗的效力。几项研究表明,用编码共刺激分子(如CD83)、肿瘤坏死因子受体超家族成员4(TNFRSF4;也称为OX40)和4-1BB配体(4-1BBL)的mRNA对DC进行电穿孔导致DCs免疫刺激活性的大幅增加[125-128]。DC功能也可以通过使用mRNA编码的促炎细胞因子(如IL-12)或运输相关分子来调节[129-131]。如上所述,TriMix 是 mRNA 编码佐剂(CD70、CD40L 和组成活性 TLR4)的混合物,可与抗原编码的 mRNA 或 mRNA 结合使用电穿孔[132]。该配方通过增加DC活化并将CD4+ T细胞表型从T调节细胞转移到T辅助1(TH1)样细胞[132-136],在多项临床前研究中证明是有效的。值得注意的是,使用装有编码黑色素瘤相关抗原的mRNA和TriMix佐剂的DC对III期或IV期黑色素瘤患者进行免疫接种,导致27%的治疗个体肿瘤消退[137]。现已使用DC疫苗进行了多项临床试验,针对各种癌症类型(例如转移性前列腺癌、转移性肺癌、肾细胞癌、脑癌、黑色素瘤、急性髓系白血病、胰腺癌等[138,139])(在参考文献51,58中审查)。

一项新的研究,将DC的mRNA电穿孔与传统化疗药物或免疫检查点抑制剂相结合。在一项试验中,III 期或 IV 期黑色素瘤患者接受 ipilimumab(一种抗 CTL 抗原 4 (CTLA4) 的单克隆抗体)和装有编码黑色素瘤相关抗原的 mRNA 的 DC 和 TriMix 进行治疗。这种干预使一定比例的复发性或难治性黑色素瘤患者的肿瘤持久减少[140]。


2.mRNA癌症疫苗的直接注入

mRNA疫苗的给药途径和递送形式会极大地影响结果。已经开发了多种 mRNA 癌症疫苗形式,使用常见的递送途径(皮内、肌肉内、皮下或鼻内)和一些非常规的疫苗接种途径(结内、静脉内、脾内或肿瘤内)。

结内施用裸mRNA是一种非常规但有效的疫苗递送方式。将mRNA直接注入次级淋巴组织中,优势在于,在T细胞活化部位将抗原靶向递送至抗原呈递细胞,从而无需迁移DC。多项研究表明,结节内注射的裸mRNA可以被DC选择性地吸收,并可以引发有效的预防或治疗性抗肿瘤T细胞反应[62,66];一项早期研究也证明了脾内分娩的类似发现[141]。在某些情况下,DC激活蛋白FMS相关酪氨酸激酶3配体(FLT3L)的共同给药显示可进一步改善对结内mRNA疫苗接种的免疫反应[142,143]。将TriMix佐剂掺入具有编码肿瘤相关抗原的mRNA的小鼠的结内注射中,可在多个肿瘤模型中产生有效的抗原特异性CTL反应和肿瘤控制[133]。最近的一项研究表明,用TriMix结内注射编码人瘤病毒(HPV)16的E7蛋白的mRNA增加了肿瘤浸润CD8+ T细胞的数量,并抑制了小鼠中表达E7的肿瘤模型的生长[67]。

由于临床前研究的成功,临床试验启动,在晚期黑色素瘤患者(NCT01684241)和肝细胞癌患者(EudraCT:2012-005572-34)中使用结节内注射编码肿瘤相关抗原的裸mRNA。在一项已发表的试验中,转移性黑色素瘤患者接受结节内给药的DC进行治疗,这些DC电穿孔了编码黑色素瘤相关抗原酪氨酸酶或gp100和TriMix的mRNA,可诱导有限的抗肿瘤反应[144]。

鼻内疫苗给药是一种无针、无创的递送方式,可使 DC 快速摄取抗原。鼻内递送的mRNA与Stemfect(Stemgent)LNP复合,在使用表达OVA的 E.G7-OVA T淋巴母细胞系的预防性和治疗性小鼠肿瘤模型中,可延迟肿瘤发作并增加存活率[145]。


肿瘤内mRNA疫苗接种,具有快速和特异性激活肿瘤驻留T细胞的优势。通常,这些疫苗不会引入编码肿瘤相关抗原的mRNA,目的是在免疫刺激分子原位激活肿瘤特异性免疫。一项早期研究表明,利用mRNA的内在免疫原性特性,编码非肿瘤相关基因(GLB1)的裸mRNA或鱼精蛋白稳定的mRNA会破坏肿瘤生长,对胶质母细胞瘤小鼠模型提供保护[146]。最近的一项研究表明,在表达OVA的淋巴瘤或肺癌小鼠模型中,编码基于干扰素-β(IFNβ)的工程细胞因子的mRNA与转化生长因子β(TGFβ)拮抗剂融合的mRNA的肿瘤内递送增加了CD8 + T细胞的细胞溶解能力,并适度延迟了肿瘤生长[147]。研究还表明,肿瘤内施用不编码肿瘤相关抗原的TriMix mRNA,会导致CD8α + DC和肿瘤特异性T细胞的活化,从而导致各种小鼠模型中肿瘤生长延迟[148]。


由于担心mRNA疫苗与血清蛋白聚集和细胞外mRNA快速降解,全身用药并不常见。因此,将mRNA配制成载体分子(carrier molecules)至关重要。如上所述,已经开发出许多递送配方来促进mRNA摄取,增加蛋白质翻译并保护mRNA免受RNases的侵害[10,11,79,80]。另一个重要问题是mRNA疫苗在全身递送后的生物分布(biodistribution)。某些基于阳离子LNP的络合剂主要通过静脉内输送到肝脏[21],这可能不适合DC激活。最近出现了在全身递送后靶向mRNA疫苗DC的有效策略[59]。使用阳离子脂质和用mRNA配制的中性辅助脂质生成了mRNA-脂质复合物(mRNA-脂质体复合物)递送平台,脂质与mRNA的比例以及颗粒的净电荷对疫苗的生物分布具有深远的影响。虽然带正电荷的脂质颗粒主要针对肺部,但带负电荷的颗粒针对次级淋巴组织和骨髓中的DC。带负电荷的颗粒诱导了针对肿瘤特异性抗原的有效免疫反应,这些抗原与各种小鼠模型中令人印象深刻的肿瘤大量减少有关[59]。由于在小鼠或非人灵长类动物中未观察到毒性作用,因此已启动使用这种方法治疗晚期黑色素瘤或三阴性乳腺癌患者的临床试验(NCT02410733和NCT02316457)。


皮肤中存在多种抗原呈递细胞[149],因此皮肤是疫苗接种期间免疫原递送的理想部位(图3)。皮内递送途径已广泛用于mRNA癌症疫苗。一项早期的开创性研究表明,皮内施用肿瘤RNA可延缓纤维肉瘤小鼠模型中的总体肿瘤生长[65]。在基于鱼精蛋白的RNActive平台中皮内注射编码肿瘤抗原的mRNA在各种癌症小鼠模型中证明是有效的[36],并且在多种预防和治疗临床环境中(表3)。一项研究表明,编码存活蛋白和各种黑色素瘤肿瘤抗原的mRNA,导致黑色素瘤患者亚群中抗原特异性T细胞的数量增加[150]。在患有去势抵抗性(castration-resistant)前列腺癌的人类中,表达多种前列腺癌相关蛋白的RNActive疫苗,在大多数接受者中引起抗原特异性T细胞反应[151]。基于脂质的载体,也有助于皮内递送的mRNA癌症疫苗的功效。在DOTAP和/或DOPE脂质体中递送OVA编码的mRNA导致抗原特异性CTL活性并抑制小鼠中表达OVA的肿瘤的生长[152]。在同一项研究中,编码粒细胞-巨噬细胞集落刺激因子(GM-CSF)的mRNA的共同给药改善了OVA特异性细胞溶解反应。另一份报告显示,皮下递送编码两种黑色素瘤相关抗原的LNP配制的mRNA可延缓小鼠肿瘤生长,LNP中脂多糖(LPS)的共同递送可增加CTL和抗肿瘤活性[153]。总体来说,mRNA癌症疫苗已被证明在人类中具有免疫原性,但根据基础免疫学研究,可能需要改进疫苗的接种方法,以获得更大的临床益处。

图 3: 直接注射mRNA疫苗有效性考虑

对于注射的mRNA疫苗的有效性,主要考虑因素包括:在抗原呈递细胞(APC)中的抗原表达,它受到受载体效率、双链RNA(dsRNA)或未修饰核苷形式的病原体相关分子模式(PAMP)的存在以及RNA序列的优化水平(密码子使用, G:C 含量、5' 和 3' 非翻译区域 (UTR) 等)的影响;树突状细胞 (DC) 成熟向次级淋巴组织的迁移,它随PAMP次级淋巴组织增加;疫苗激活强大的T滤泡辅助(TFH)细胞和生发中心(GC)B细胞反应的能力 ,这一领域仍然知之甚少。这里以皮内注射为例。EC:细胞外。

在一些临床前研究中,mRNA疫苗接种与传统化疗、放疗和免疫检查点抑制剂等辅助疗法相结合,改善了疫苗接种的结果[154,155]。例如,顺铂(cisplatin)治疗显著提高了编码HPV16 E7癌蛋白和TriMix的mRNA免疫的治疗效果,引起小鼠模型中磁性生殖道肿瘤的完全排斥反应[67]。值得注意的是,也有人提出,用针对程序性细胞死亡蛋白1(PD1)的抗体治疗,提高了基于新表位mRNA的疫苗对人类转移性黑色素瘤的疗效,但需要更多的数据来验证这一假说[68]。


表 3 mRNA癌症疫苗的临床试验
Sponsoring institutionVaccine type (route of administration)TargetsTrial numbers (phase)Status
Antwerp University HospitalDC EP with TAA mRNA (i.d. or NA)AML• NCT00834002 (I)
• NCT01686334 (II)
• Completed206,207
• Recruiting
AML, CML, multiple myelomaNCT00965224 (II)Unknown
Multiple solid tumoursNCT01291420 (I/II)Unknown208
MesotheliomaNCT02649829 (I/II)Recruiting
GlioblastomaNCT02649582 (I/II)Recruiting
Argos TherapeuticsDC EP with autologous tumour mRNA with or without CD40L mRNA (i.d. or NA)Renal cell carcinoma• NCT01482949 (II)
• NCT00678119 (II)
• NCT00272649 (I/II)
• NCT01582672 (III)
• NCT00087984 (I/II)
• Ongoing
• Completed209
• Completed; results NA
• Ongoing
• Completed; results NA
Pancreatic cancerNCT00664482 (NA)Completed; results NA
Asterias BiotherapeuticsDC loaded with TAA mRNA (NA)AMLNCT00510133 (II)Completed210
BioNTech RNA Pharmaceuticals GmbHNaked TAA or neo-Ag mRNA (i.nod.)Melanoma• NCT01684241 (I)
• NCT02035956 (I)
• Completed; results NA
• Ongoing
Liposome-complexed TAA mRNA (i.v.)MelanomaNCT02410733 (I)Recruiting59
Liposome-formulated TAA and neo-Ag mRNA (i.v.)Breast cancerNCT02316457 (I)Recruiting
CureVac AGRNActive TAA mRNA (i.d.)Non-small-cell lung cancer• NCT00923312 (I/II)
• NCT01915524 (I)
• Completed211
• Terminated200
Prostate cancer• NCT02140138 (II)
• NCT00831467 (I/II)
• NCT01817738 (I/II)
• Terminated
• Completed151
• Terminated212
Duke UniversityDC loaded with CMV Ag mRNA (i.d. or ing.)Glioblastoma, malignant glioma• NCT00626483 (I)
• NCT00639639 (I)
• NCT02529072 (I)
• NCT02366728 (II)
• Ongoing213
• Ongoing138,139
• Recruiting
• Recruiting
DC loaded with autologous tumour mRNA (i.d.)GlioblastomaNCT00890032 (I)Completed; results NA
DC, matured, loaded with TAA mRNA (i.nod.)MelanomaNCT01216436 (I)Terminated
Guangdong 999 Brain HospitalDC loaded with TAA mRNA (NA)Glioblastoma• NCT02808364 (I/II)
• NCT02709616 (I/II)
• Recruiting
• Recruiting
Brain metastasesNCT02808416 (I/II)Recruiting
Herlev HospitalDC loaded with TAA mRNA (i.d.)Breast cancer, melanomaNCT00978913 (I)Completed214
Prostate cancerNCT01446731 (II)Completed215
Life Research Technologies GmbHDC, matured, loaded with TAA mRNA (NA)Ovarian cancerNCT01456065 (I)Unknown
Ludwig-Maximilian-University of MunichDC loaded with TAA and CMV Ag mRNA (i.d.)AMLNCT01734304 (I/II)Recruiting
MD Anderson Cancer CenterDC loaded with AML lysate and mRNA (NA)AMLNCT00514189 (I)Terminated
Memorial Sloan Kettering Cancer CenterDC (Langerhans) EP with TAA mRNA (i.d.)MelanomaNCT01456104 (I)Ongoing
Multiple myelomaNCT01995708 (I)Recruiting
Oslo University HospitalDC loaded with autologous tumour or TAA mRNA (i.d. or NA)Melanoma• NCT00961844 (I/II)
• NCT01278940 (I/II)
• Terminated
• Completed216
Prostate cancer• NCT01197625 (I/II)
• NCT01278914 (I/II)
• Recruiting
• Completed; results NA
GlioblastomaNCT00846456 (I/II)Completed217
Ovarian cancerNCT01334047 (I/II)Terminated
Radboud UniversityDC EP with TAA mRNA (i.d. and i.v. or i.nod)Colorectal cancerNCT00228189 (I/II)Completed218
Melanoma• NCT00929019 (I/II)
• NCT00243529 (I/II)
• NCT00940004 (I/II)
• NCT01530698 (I/II)
• NCT02285413 (II)
• Terminated
• Completed219,220
• Completed220,221
• Completed144,220,221
• Completed; results NA
Universitair Ziekenhuis BrusselDC EP with TAA and TriMix mRNA (i.d. and i.v.)Melanoma• NCT01066390 (I)
• NCT01302496 (II)
• NCT01676779 (II)
• Completed137
• Completed140
• Completed; results NA
University Hospital ErlangenDC, matured, loaded with autologous tumour RNA (i.v.)MelanomaNCT01983748 (III)Recruiting
University Hospital TübingenAutologous tumour mRNA with GM-CSF protein (i.d. and s.c.)MelanomaNCT00204516 (I/II)Completed222
Protamine-complexed TAA mRNA with GM-CSF protein (i.d. and s.c.)MelanomaNCT00204607 (I/II)Completed150
University of Campinas, BrazilDC loaded with TAA mRNA (NA)AML, myelodysplastic syndromesNCT03083054 (I/II)Recruiting
University of FloridaRNActive* TAA mRNA (i.d.)Prostate cancerNCT00906243 (I/II)Terminated
DC loaded with CMV Ag mRNA with GM-CSF protein (i.d.)Glioblastoma, malignant gliomaNCT02465268 (II)Recruiting
  1. The table summarizes the clinical trials registered at ClinicalTrials.gov as of 5 May 2017. Ag, antigen; AML, acute myeloid leukaemia; CD40L, CD40 ligand; CML, chronic myeloid leukaemia; CMV, cytomegalovirus; DC, dendritic cell; EP, electroporated; GM-CSF, granulocyte–macrophage colony-stimulating factor; i.d., intradermal; ing., inguinal injection; i.nod., intranodal injection; i.v., intravenous; NA, not available; neo-Ag, personalized neoantigen; s.c., subcutaneous; TAA, tumour-associated antigen.

  2. *Developed by CureVac AG.


(待续)


参考文献

1.World Health Organization. Immunization coverage. World Health Organization http://www.who.int/ mediacentre/factsheets/fs378/en (2017). 2. Younger, D. S., Younger, A. P. & Guttmacher, S. Childhood vaccination: implications for global and domestic public health. Neurol. Clin. 34, 1035–1047 (2016). 3. Plotkin, S. A. Vaccines: the fourth century. Clin. Vaccine Immunol. 16, 1709–1719 (2009). 4. Rodrigues, C. M. C., Pinto, M. V., Sadarangani, M. & Plotkin, S. A. Whither vaccines? J. Infect. 74 (Suppl. 1), S2–S9 (2017). 5. Wolff, J. A. et al. Direct gene transfer into mouse muscle in vivo. Science 247, 1465–1468 (1990). This study demonstrates protein production from RNA administered in vivo. 6. Jirikowski, G. F., Sanna, P. P., Maciejewski-Lenoir, D. & Bloom, F. E. Reversal of diabetes insipidus in Brattleboro rats: intrahypothalamic injection of vasopressin mRNA. Science 255, 996–998 (1992). 7. Suschak, J. J., Williams, J. A. & Schmaljohn, C. S. Advancements in DNA vaccine vectors, non-mechanical delivery methods, and molecular adjuvants to increase immunogenicity. Hum. Vaccin. Immunother. 13, 2837–2848 (2017). 8. Tandrup Schmidt, S., Foged, C., Korsholm, K. S., Rades, T. & Christensen, D. Liposome-based adjuvants for subunit vaccines: formulation strategies for subunit antigens and immunostimulators. Pharmaceutics 8, E7 (2016). 9. Kariko, K. et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol. Ther. 16, 1833–1840 (2008). 10. Kauffman, K. J., Webber, M. J. & Anderson, D. G. Materials for non-viral intracellular delivery of messenger RNA therapeutics. J. Control. Release 240, 227–234 (2016). 11. Guan, S. & Rosenecker, J. Nanotechnologies in delivery of mRNA therapeutics using nonviral vectorbased delivery systems. Gene Ther. 24, 133–143 (2017). 12. Thess, A. et al. Sequence-engineered mRNA without chemical nucleoside modifications enables an effective protein therapy in large animals. Mol. Ther. 23, 1456–1464 (2015). 13. Kariko, K., Muramatsu, H., Ludwig, J. & Weissman, D. Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleosidemodified, protein-encoding mRNA. Nucleic Acids Res. 39, e142 (2011). This study demonstrates the importance of purification of IVT mRNA in achieving potent protein translation and in suppressing inflammatory responses. 14. Weissman, D. mRNA transcript therapy. Expert Rev. Vaccines 14, 265–281 (2015). 15. Sahin, U., Kariko, K. & Tureci, O. mRNA-based therapeutics — developing a new class of drugs. Nat. Rev. Drug Discov. 13, 759–780 (2014). This is a useful Review covering vaccine and non-vaccine forms of mRNA therapeutics. 16. Pardi, N., Muramatsu, H., Weissman, D. & Kariko, K. In vitro transcription of long RNA containing modified nucleosides. Methods Mol. Biol. 969, 29–42 (2013). 17. Tsui, N. B., Ng, E. K. & Lo, Y. M. Stability of endogenous and added RNA in blood specimens, serum, and plasma. Clin. Chem. 48, 1647–1653 (2002). 18. Petsch, B. et al. Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infection. Nat. Biotechnol. 30, 1210–1216 (2012). This study demonstrates that directly injected, non-replicating mRNA can induce protective immune responses against an infectious pathogen. 19. Geall, A. J. et al. Nonviral delivery of self-amplifying RNA vaccines. Proc. Natl Acad. Sci. USA 109, 14604–14609 (2012). This important study demonstrates that the duration of in vivo protein production from RNA replicons can be greatly improved by packaging them into lipid nanoparticles. 20. Pardi, N. et al. Zika virus protection by a single lowdose nucleoside-modified mRNA vaccination. Nature 543, 248–251 (2017). 21. Pardi, N. et al. Expression kinetics of nucleosidemodified mRNA delivered in lipid nanoparticles to mice by various routes. J. Control. Release 217, 345–351 (2015). 22. Bahl, K. et al. Preclinical and clinical demonstration of immunogenicity by mRNA vaccines against H10N8 and H7N9 influenza viruses. Mol. Ther. 25, 1316–1327 (2017). This is a report of a clinical vaccine trial using directly injected, non-replicating, nucleoside-modified mRNA against an infectious pathogen. 23. Ross, J. & Sullivan, T. D. Half-lives of beta and gamma globin messenger RNAs and of protein synthetic capacity in cultured human reticulocytes. Blood 66, 1149–1154 (1985). 24. Holtkamp, S. et al. Modification of antigen-encoding RNA increases stability, translational efficacy, and T-cell stimulatory capacity of dendritic cells. Blood 108, 4009–4017 (2006). 25. Gallie, D. R. The cap and poly(A) tail function synergistically to regulate mRNA translational efficiency. Genes Dev. 5, 2108–2116 (1991). 26. Martin, S. A., Paoletti, E. & Moss, B. Purification of mRNA guanylyltransferase and mRNA (guanine-7-) methyltransferase from vaccinia virions. J. Biol. Chem. 250, 9322–9329 (1975). 27. Stepinski, J., Waddell, C., Stolarski, R., Darzynkiewicz, E. & Rhoads, R. E. Synthesis and properties of mRNAs containing the novel “anti-reverse” cap analogs 7-methyl(3ʹ-O-methyl)GpppG and 7-methyl (3ʹ-deoxy)GpppG. RNA 7, 1486–1495 (2001). 28. Malone, R. W., Felgner, P. L. & Verma, I. M. Cationic liposome-mediated RNA transfection. Proc. Natl Acad. Sci. USA 86, 6077–6081 (1989). 29. Gustafsson, C., Govindarajan, S. & Minshull, J. Codon bias and heterologous protein expression. Trends Biotechnol. 22, 346–353 (2004). 30. Mauro, V. P. & Chappell, S. A. A critical analysis of codon optimization in human therapeutics. Trends Mol. Med. 20, 604–613 (2014). 31. Kudla, G., Lipinski, L., Caffin, F., Helwak, A. & Zylicz, M. High guanine and cytosine content increases mRNA levels in mammalian cells. PLoS Biol. 4, e180 (2006). 32. Kudla, G., Murray, A. W., Tollervey, D. & Plotkin, J. B. Coding-sequence determinants of gene expression in Escherichia coli. Science 324, 255–258 (2009). 33. Buhr, F. et al. Synonymous codons direct cotranslational folding toward different protein conformations. Mol. Cell 61, 341–351 (2016). 34. Yu, C. H. et al. Codon usage influences the local rate of translation elongation to regulate co-translational protein folding. Mol. Cell 59, 744–754 (2015). 35. Chen, N. et al. RNA sensors of the innate immune system and their detection of pathogens. IUBMB Life 69, 297–304 (2017). 36. Fotin-Mleczek, M. et al. Messenger RNA-based vaccines with dual activity induce balanced TLR-7 dependent adaptive immune responses and provide antitumor activity. J. Immunother. 34, 1–15 (2011). 37. Rettig, L. et al. Particle size and activation threshold: a new dimension of danger signaling. Blood 115, 4533–4541 (2010). 38. de Haro, C., Mendez, R. & Santoyo, J. The eIF-2α kinases and the control of protein synthesis. FASEB J. 10, 1378–1387 (1996). 39. Liang, S. L., Quirk, D. & Zhou, A. RNase L: its biological roles and regulation. IUBMB Life 58, 508–514 (2006). 40. Zhang, Z. et al. Structural analysis reveals that Tolllike receptor 7 is a dual receptor for guanosine and single-stranded RNA. Immunity 45, 737–748 (2016). 41. Tanji, H. et al. Toll-like receptor 8 senses degradation products of single-stranded RNA. Nat. Struct. Mol. Biol. 22, 109–115 (2015). 42. Isaacs, A., Cox, R. A. & Rotem, Z. Foreign nucleic acids as the stimulus to make interferon. Lancet 2, 113–116 (1963). 43. Schwartz, S. et al. Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA. Cell 159, 148–162 (2014). 44. Carlile, T. M. et al. Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature 515, 143–146 (2014). 45. Andries, O. et al. N1-methylpseudouridine-incorporated mRNA outperforms pseudouridine-incorporated mRNA by providing enhanced protein expression and reduced immunogenicity in mammalian cell lines and mice. J. Control. Release 217, 337–344 (2015). 46. Anderson, B. R. et al. Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation. Nucleic Acids Res. 38, 5884–5892 (2010). 47. Anderson, B. R. et al. Nucleoside modifications in RNA limit activation of 2ʹ-5ʹ-oligoadenylate synthetase and increase resistance to cleavage by RNase L. Nucleic Acids Res. 39, 9329–9338 (2011). 48. Kariko, K., Buckstein, M., Ni, H. & Weissman, D. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23, 165–175 (2005). This report demonstrates that nucleoside modification of mRNA decreases inflammatory responses. 49. Kauffman, K. J. et al. Efficacy and immunogenicity of unmodified and pseudouridine-modified mRNA delivered systemically with lipid nanoparticles in vivo. Biomaterials 109, 78–87 (2016). 50. Brito, L. A. et al. A cationic nanoemulsion for the delivery of next-generation RNA vaccines. Mol. Ther. 22, 2118–2129 (2014). 51. Van Lint, S. et al. The ReNAissanCe of mRNA-based cancer therapy. Expert Rev. Vaccines 14, 235–251 (2015). 52. Kallen, K. J. et al. A novel, disruptive vaccination technology: self-adjuvanted RNActive® vaccines. Hum. Vaccin Immunother. 9, 2263–2276 (2013). 53. Rauch, S., Lutz, J., Kowalczyk, A., Schlake, T. & Heidenreich, R. RNActive® technology: generation and testing of stable and immunogenic mRNA vaccines. Methods Mol. Biol. 1499, 89–107 (2017). 54. Edwards, D. K. et al. Adjuvant effects of a sequenceengineered mRNA vaccine: translational profiling demonstrates similar human and murine innate response. J. Transl Med. 15, 1 (2017). 55. Kowalczyk, A. et al. Self-adjuvanted mRNA vaccines induce local innate immune responses that lead to a potent and boostable adaptive immunity. Vaccine 34, 3882–3893 (2016). 56. Schnee, M. et al. An mRNA vaccine encoding rabies virus glycoprotein induces protection against lethal infection in mice and correlates of protection in adult and newborn pigs. PLoS Negl. Trop. Dis. 10, e0004746 (2016). 57. Ziegler, A. et al. A new RNA-based adjuvant enhances virus-specific vaccine responses by locally triggering TLR- and RLH-dependent effects. J. Immunol. 198, 1595–1605 (2017). 58. Benteyn, D., Heirman, C., Bonehill, A., Thielemans, K. & Breckpot, K. mRNA-based dendritic cell vaccines. Expert Rev. Vaccines 14, 161–176 (2015). 59. Kranz, L. M. et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 534, 396–401 (2016). 60. Wykes, M., Pombo, A., Jenkins, C. & MacPherson, G. G. Dendritic cells interact directly with naive B lymphocytes to transfer antigen and initiate class switching in a primary T-dependent response. J. Immunol. 161, 1313–1319 (1998). 61. Selmi, A. et al. Uptake of synthetic naked RNA by skin-resident dendritic cells via macropinocytosis allows antigen expression and induction of T-cell responses in mice. Cancer Immunol. Immunother. 65, 1075–1083 (2016). 62. Diken, M. et al. Selective uptake of naked vaccine RNA by dendritic cells is driven by macropinocytosis and abrogated upon DC maturation. Gene Ther. 18, 702–708 (2011). 63. Lorenz, C. et al. Protein expression from exogenous mRNA: uptake by receptor-mediated endocytosis and trafficking via the lysosomal pathway. RNA Biol. 8, 627–636 (2011). 64. Gehl, J. Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research. Acta Physiol. Scand. 177, 437–447 (2003). 65. Granstein, R. D., Ding, W. & Ozawa, H. Induction of anti-tumor immunity with epidermal cells pulsed with tumor-derived RNA or intradermal administration of RNA. J. Invest. Dermatol. 114, 632–636 (2000). 66. Kreiter, S. et al. Intranodal vaccination with naked antigen-encoding RNA elicits potent prophylactic and therapeutic antitumoral immunity. Cancer Res. 70, 9031–9040 (2010). 67. Bialkowski, L. et al. Intralymphatic mRNA vaccine induces CD8 T-cell responses that inhibit the growth of mucosally located tumours. Sci. Rep. 6, 22509 (2016). 68. Sahin, U. et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547, 222–226 (2017). 69. Qiu, P., Ziegelhoffer, P., Sun, J. & Yang, N. S. Gene gun delivery of mRNA in situ results in efficient transgene expression and genetic immunization. Gene Ther. 3, 262–268 (1996). 70. Steitz, J., Britten, C. M., Wolfel, T. & Tuting, T. Effective induction of anti-melanoma immunity following genetic vaccination with synthetic mRNA coding for the fusion protein EGFP.TRP2. Cancer Immunol. Immunother. 55, 246–253 (2006). 71. Aberle, J. H., Aberle, S. W., Kofler, R. M. & Mandl, C. W. Humoral and cellular immune response to RNA immunization with flavivirus replicons derived from tick-borne encephalitis virus. J. Virol. 79, 15107–15113 (2005). 72. Kofler, R. M. et al. Mimicking live flavivirus immunization with a noninfectious RNA vaccine. Proc. Natl Acad. Sci. USA 101, 1951–1956 (2004). 73. Mandl, C. W. et al. In vitro-synthesized infectious RNA as an attenuated live vaccine in a flavivirus model. Nat. Med. 4, 1438–1440 (1998). 74. Johansson, D. X., Ljungberg, K., Kakoulidou, M. & Liljestrom, P. Intradermal electroporation of naked replicon RNA elicits strong immune responses. PLoS ONE 7, e29732 (2012). 75. Piggott, J. M., Sheahan, B. J., Soden, D. M., O’Sullivan, G. C. & Atkins, G. J. Electroporation of RNA stimulates immunity to an encoded reporter gene in mice. Mol. Med. Rep. 2, 753–756 (2009). 76. Broderick, K. E. & Humeau, L. M. Electroporationenhanced delivery of nucleic acid vaccines. Expert Rev. Vaccines 14, 195–204 (2015). 77. Hoerr, I., Obst, R., Rammensee, H. G. & Jung, G. In vivo application of RNA leads to induction of specific cytotoxic T lymphocytes and antibodies. Eur. J. Immunol. 30, 1–7 (2000). 78. Schlake, T., Thess, A., Fotin-Mleczek, M. & Kallen, K. J. Developing mRNA-vaccine technologies. RNA Biol. 9, 1319–1330 (2012). 79. Reichmuth, A. M., Oberli, M. A., Jeklenec, A., Langer, R. & Blankschtein, D. mRNA vaccine delivery using lipid nanoparticles. Ther. Deliv. 7, 319–334 (2016). 80. Midoux, P. & Pichon, C. Lipid-based mRNA vaccine delivery systems. Expert Rev. Vaccines 14, 221–234 (2015). 81. Kanasty, R., Dorkin, J. R., Vegas, A. & Anderson, D. Delivery materials for siRNA therapeutics. Nat. Mater. 12, 967–977 (2013). 82. Akinc, A. et al. Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol. Ther. 18, 1357–1364 (2010). 83. Ratajczak, M. Z. & Ratajczak, J. Horizontal transfer of RNA and proteins between cells by extracellular microvesicles: 14 years later. Clin. Transl Med. 5, 7 (2016). 84. Tam, H. H. et al. Sustained antigen availability during germinal center initiation enhances antibody responses to vaccination. Proc. Natl Acad. Sci. USA 113, E6639–E6648 (2016). 85. Richner, J. M. et al. Modified mRNA Vaccines protect against Zika virus infection. Cell 168, 1114–1125.e10 (2017). 86. Havenar-Daughton, C., Lee, J. H. & Crotty, S. Tfh cells and HIV bnAbs, an immunodominance model of the HIV neutralizing antibody generation problem. Immunol. Rev. 275, 49–61 (2017). 87. Brito, L. A. et al. Self-amplifying mRNA vaccines. Adv. Genet. 89, 179–233 (2015). 88. Chahal, J. S. et al. An RNA nanoparticle vaccine against Zika virus elicits antibody and CD8+ T cell responses in a mouse model. Sci. Rep. 7, 252 (2017). 89. Chahal, J. S. et al. Dendrimer-RNA nanoparticles generate protective immunity against lethal Ebola, H1N1 influenza, and Toxoplasma gondii challenges with a single dose. Proc. Natl Acad. Sci. USA 113, E4133–E4142 (2016). 90. Ulmer, J. B. & Geall, A. J. Recent innovations in mRNA vaccines. Curr. Opin. Immunol. 41, 18–22 (2016). 91. Alberer, M. et al. Safety and immunogenicity of a mRNA rabies vaccine in healthy adults: an open-label, non-randomised, prospective, first-in-human phase 1 clinical trial. Lancet 390, 1511–1520 (2017). This is a report of a clinical vaccine trial using directly injected, non-replicating, unmodified mRNA against an infectious pathogen. 92. Perri, S. et al. An alphavirus replicon particle chimera derived from venezuelan equine encephalitis and sindbis viruses is a potent gene-based vaccine delivery vector. J. Virol. 77, 10394–10403 (2003). 93. Fleeton, M. N. et al. Self-replicative RNA vaccines elicit protection against influenza A virus, respiratory syncytial virus, and a tickborne encephalitis virus. J. Infect. Dis. 183, 1395–1398 (2001). This is an early report of the protective efficacy that results from self-amplifying mRNA vaccines against infectious pathogens. 94. Magini, D. et al. Self-amplifying mRNA vaccines expressing multiple conserved influenza antigens confer protection against homologous and heterosubtypic viral challenge. PLoS ONE 11, e0161193 (2016). 95. Hekele, A. et al. Rapidly produced SAM® vaccine against H7N9 influenza is immunogenic in mice. Emerg. Microbes Infect. 2, e52 (2013). 96. Brazzoli, M. et al. Induction of broad-based immunity and protective efficacy by self-amplifying mRNA vaccines encoding influenza virus hemagglutinin. J. Virol. 90, 332–344 (2015). 97. Bogers, W. M. et al. Potent immune responses in rhesus macaques induced by nonviral delivery of a self-amplifying RNA vaccine expressing HIV type 1 envelope with a cationic nanoemulsion. J. Infect. Dis. 211, 947–955 (2015). 98. McCullough, K. C. et al. Self-replicating replicon-RNA delivery to dendritic cells by chitosan-nanoparticles for translation in vitro and in vivo. Mol. Ther. Nucleic Acids 3, e173 (2014). 99. Demoulins, T. et al. Polyethylenimine-based polyplex delivery of self-replicating RNA vaccines. Nanomedicine 12, 711–722 (2016). 100. Maruggi, G. et al. Immunogenicity and protective efficacy induced by self-amplifying mRNA vaccines encoding bacterial antigens. Vaccine 35, 361–368 (2017). 101. Van Gulck, E. et al. mRNA-based dendritic cell vaccination induces potent antiviral T-cell responses in HIV-1-infected patients. AIDS 26, F1–F12 (2012). 102. Routy, J. P. et al. Immunologic activity and safety of autologous HIV RNA-electroporated dendritic cells in HIV-1 infected patients receiving antiretroviral therapy. Clin. Immunol. 134, 140–147 (2010). 103. Allard, S. D. et al. A phase I/IIa immunotherapy trial of HIV-1-infected patients with Tat, Rev and Nef expressing dendritic cells followed by treatment interruption. Clin. Immunol. 142, 252–268 (2012). 104. Gandhi, R. T. et al. Immunization of HIV-1-infected persons with autologous dendritic cells transfected with mRNA encoding HIV-1 Gag and Nef: results of a randomized, placebo-controlled clinical trial. J. Acquir. Immune Def. Syndr. 71, 246–253 (2016). 105. Jacobson, J. M. et al. Dendritic cell immunotherapy for HIV-1 infection using autologous HIV-1 RNA: a randomized, double-blind, placebo-controlled clinical trial. J. Acquir. Immune Def. Syndr. 72, 31–38 (2016). 106. Gay, C. L. et al. Immunogenicity of AGS-004 dendritic cell therapy in patients treated during acute HIV infection. AIDS Res. Hum. Retroviruses http://dx.doi. org/10.1089/aid.2017.0071 (2017). 107. Van Craenenbroeck, A. H. et al. Induction of cytomegalovirus-specific T cell responses in healthy volunteers and allogeneic stem cell recipients using vaccination with messenger RNA-transfected dendritic cells. Transplantation 99, 120–127 (2015). 108. Martinon, F. et al. Induction of virus-specific cytotoxic T lymphocytes in vivo by liposome-entrapped mRNA. Eur. J. Immunol. 23, 1719–1722 (1993). This early study demonstrates that liposome-encapsulated mRNA encoding a viral antigen induces T cell responses. 109. Pollard, C. et al. Type I IFN counteracts the induction of antigen-specific immune responses by lipid-based delivery of mRNA vaccines. Mol. Ther. 21, 251–259 (2013). 110. Zhao, M., Li, M., Zhang, Z., Gong, T. & Sun, X. Induction of HIV-1 gag specific immune responses by cationic micelles mediated delivery of gag mRNA. Drug Deliv. 23, 2596–2607 (2016). 111. Li, M. et al. Enhanced intranasal delivery of mRNA vaccine by overcoming the nasal epithelial barrier via intra- and paracellular pathways. J. Control. Release 228, 9–19 (2016). 112. Richner, J. M. et al. Vaccine mediated protection against Zika virus-induced congenital disease. Cell 170, 273–283.e12 (2017). 113. Roman, F., Vaman, T., Kafeja, F., Hanon, E. & Van Damme, P. AS03(A)-adjuvanted influenza A (H1N1) 2009 vaccine for adults up to 85 years of age. Clin. Infect. Dis. 51, 668–677 (2010). 114. Zarei, S. et al. Immunogenicity and reactogenicity of two diphtheria-tetanus-whole cell pertussis vaccines in Iranian pre-school children, a randomized controlled trial. Hum. Vaccin. Immunother. 9, 1316–1322 (2013). 115. Diken, M., Kranz, L. M., Kreiter, S. & Sahin, U. mRNA: a versatile molecule for cancer vaccines. Curr. Issues Mol. Biol. 22, 113–128 (2017). 116. Fiedler, K., Lazzaro, S., Lutz, J., Rauch, S. & Heidenreich, R. mRNA cancer vaccines. Recent Results Cancer Res. 209, 61–85 (2016). 117. Grunwitz, C. & Kranz, L. M. mRNA cancer vaccinesmessages that prevail. Curr. Top. Microbiol. Immunol. 405, 145–164 (2017). 118. McNamara, M. A., Nair, S. K. & Holl, E. K. RNA-Based Vaccines in Cancer Immunotherapy. J. Immunol. Res. 2015, 794528 (2015). 119. Sullenger, B. A. & Nair, S. From the RNA world to the clinic. Science 352, 1417–1420 (2016). 120. Vigneron, N. Human tumor antigens and cancer immunotherapy. Biomed. Res. Int. 2015, 948501 (2015). 121. Tureci, O. et al. Targeting the heterogeneity of cancer with individualized neoepitope vaccines. Clin. Cancer Res. 22, 1885–1896 (2016). 122. Coulie, P. G., Van den Eynde, B. J., van der Bruggen, P. & Boon, T. Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat. Rev. Cancer 14, 135–146 (2014). 123. Conry, R. M. et al. Characterization of a messenger RNA polynucleotide vaccine vector. Cancer Res. 55, 1397–1400 (1995). 124. Boczkowski, D., Nair, S. K., Snyder, D. & Gilboa, E. Dendritic cells pulsed with RNA are potent antigenpresenting cells in vitro and in vivo. J. Exp. Med. 184, 465–472 (1996). This report demonstrates the efficacy of mRNA DC vaccines. 125. De Keersmaecker, B. et al. The combination of 4-1BBL and CD40L strongly enhances the capacity of dendritic cells to stimulate HIV-specific T cell responses. J. Leukoc. Biol. 89, 989–999 (2011). 126. Dannull, J. et al. Enhancing the immunostimulatory function of dendritic cells by transfection with mRNA encoding OX40 ligand. Blood 105, 3206–3213 (2005). 127. Aerts-Toegaert, C. et al. CD83 expression on dendritic cells and T cells: correlation with effective immune responses. Eur. J. Immunol. 37, 686–695 (2007). 128. Grunebach, F. et al. Cotransfection of dendritic cells with RNA coding for HER-2/neu and 4-1BBL increases the induction of tumor antigen specific cytotoxic T lymphocytes. Cancer Gene Ther. 12, 749–756 (2005). 129. Bontkes, H. J., Kramer, D., Ruizendaal, J. J., Meijer, C. J. & Hooijberg, E. Tumor associated antigen and interleukin-12 mRNA transfected dendritic cells enhance effector function of natural killer cells and antigen specific T-cells. Clin. Immunol. 127, 375–384 (2008). 130. Bontkes, H. J. et al. Dendritic cells transfected with interleukin-12 and tumor-associated antigen messenger RNA induce high avidity cytotoxic T cells. Gene Ther. 14, 366–375 (2007). 131. Dorrie, J. et al. Introduction of functional chimeric E/L-selectin by RNA electroporation to target dendritic cells from blood to lymph nodes. Cancer Immunol. Immunother. 57, 467–477 (2008). 132. Bonehill, A. et al. Enhancing the T-cell stimulatory capacity of human dendritic cells by co-electroporation with CD40L, CD70 and constitutively active TLR4 encoding mRNA. Mol. Ther. 16, 1170–1180 (2008). This is a description of the TriMix mRNA adjuvant cocktail. 133. Van Lint, S. et al. Preclinical evaluation of TriMix and antigen mRNA-based antitumor therapy. Cancer Res. 72, 1661–1671 (2012). 134. Van Lint, S. et al. Optimized dendritic cell-based immunotherapy for melanoma: the TriMix-formula. Cancer Immunol. Immunother. 63, 959–967 (2014). 135. Pen, J. J. et al. Modulation of regulatory T cell function by monocyte-derived dendritic cells matured through electroporation with mRNA encoding CD40 ligand, constitutively active TLR4, and CD70. J. Immunol. 191, 1976–1983 (2013). 136. Wilgenhof, S. et al. Therapeutic vaccination with an autologous mRNA electroporated dendritic cell vaccine in patients with advanced melanoma. J. Immunother. 34, 448–456 (2011). 137. Wilgenhof, S. et al. A phase IB study on intravenous synthetic mRNA electroporated dendritic cell immunotherapy in pretreated advanced melanoma patients. Ann. Oncol. 24, 2686–2693 (2013). 138. Mitchell, D. A. et al. Tetanus toxoid and CCL3 improve dendritic cell vaccines in mice and glioblastoma patients. Nature 519, 366–369 (2015). 139. Batich, K. A. et al. Long-term survival in glioblastoma with cytomegalovirus pp65-targeted vaccination. Clin. Cancer Res. 23, 1898–1909 (2017). 140. Wilgenhof, S. et al. Phase II study of autologous monocyte-derived mRNA electroporated dendritic cells (TriMixDC-MEL) plus ipilimumab in patients with pretreated advanced melanoma. J. Clin. Oncol. 34, 1330–1338 (2016). 141. Zhou, W. Z. et al. RNA melanoma vaccine: induction of antitumor immunity by human glycoprotein 100 mRNA immunization. Hum. Gene Ther. 10, 2719–2724 (1999). 142. Kreiter, S. et al. FLT3 ligand as a molecular adjuvant for naked RNA vaccines. Methods Mol. Biol. 1428, 163–175 (2016). 143. Kreiter, S. et al. FLT3 ligand enhances the cancer therapeutic potency of naked RNA vaccines. Cancer Res. 71, 6132–6142 (2011). 144. Bol, K. F. et al. Intranodal vaccination with mRNAoptimized dendritic cells in metastatic melanoma patients. Oncoimmunology 4, e1019197 (2015). 145. Phua, K. K., Staats, H. F., Leong, K. W. & Nair, S. K. Intranasal mRNA nanoparticle vaccination induces prophylactic and therapeutic anti-tumor immunity. Sci. Rep. 4, 5128 (2014). 146. Scheel, B. et al. Therapeutic anti-tumor immunity triggered by injections of immunostimulating singlestranded RNA. Eur. J. Immunol. 36, 2807–2816 (2006). 147. Van der Jeught, K. et al. Intratumoral administration of mRNA encoding a fusokine consisting of IFN-β and the ectodomain of the TGF-β receptor II potentiates antitumor immunity. Oncotarget 5, 10100–10113 (2014). 148. Van Lint, S. et al. Intratumoral delivery of TriMix mRNA results in T-cell activation by cross-presenting dendritic cells. Cancer Immunol. Res. 4, 146–156 (2016). 149. Clausen, B. E. & Stoitzner, P. Functional specialization of skin dendritic cell subsets in regulating T Cell responses. Front. Immunol. 6, 534 (2015). 150. Weide, B. et al. Direct injection of protamine-protected mRNA: results of a phase 1/2 vaccination trial in metastatic melanoma patients. J. Immunother. 32, 498–507 (2009). 151. Kubler, H. et al. Self-adjuvanted mRNA vaccination in advanced prostate cancer patients: a first-in-man phase I/IIa study. J. Immunother. Cancer 3, 26 (2015). 152. Hess, P. R., Boczkowski, D., Nair, S. K., Snyder, D. & Gilboa, E. Vaccination with mRNAs encoding tumorassociated antigens and granulocyte-macrophage colony-stimulating factor efficiently primes CTL responses, but is insufficient to overcome tolerance to a model tumor/self antigen. Cancer Immunol. Immunother. 55, 672–683 (2006). 153. Oberli, M. A. et al. Lipid nanoparticle assisted mRNA delivery for potent cancer immunotherapy. Nano Lett. 17, 1326–1335 (2017). 154. Fotin-Mleczek, M. et al. Highly potent mRNA based cancer vaccines represent an attractive platform for combination therapies supporting an improved therapeutic effect. J. Gene Med. 14, 428–439 (2012). 155. Fotin-Mleczek, M. et al. mRNA-based vaccines synergize with radiation therapy to eradicate established tumors. Radiat. Oncol. 9, 180 (2014). 156. Pascolo, S. Messenger RNA-based vaccines. Expert Opin. Biol. Ther. 4, 1285–1294 (2004). 157. Geall, A. J., Mandl, C. W. & Ulmer, J. B. RNA: the new revolution in nucleic acid vaccines. Semin. Immunol. 25, 152–159 (2013). 158. Weissman, D., Pardi, N., Muramatsu, H. & Kariko, K. HPLC purification of in vitro transcribed long RNA. Methods Mol. Biol. 969, 43–54 (2013). 159. Muralidhara, B. K. et al. Critical considerations for developing nucleic acid macromolecule based drug products. Drug Discov. Today 21, 430–444 (2016). 160. Jones, K. L., Drane, D. & Gowans, E. J. Long-term storage of DNA-free RNA for use in vaccine studies. Biotechniques 43, 675–681 (2007). 161. Probst, J. et al. Characterization of the ribonuclease activity on the skin surface. Genet. Vaccines Ther. 4, 4 (2006). 162. U.S. Food & Drug Administration. Guidance for Industry: Considerations for plasmid DNA vaccines for infectious disease indications. U.S. Food & Drug Administration https://www.fda.gov/downloads/ BiologicsBloodVaccines/ GuidanceComplianceRegulatoryInformation/ Guidances/Vaccines/ucm091968.pdf (2007). 163. U.S. Food & Drug Administration. Guidance for Industry: Guidance for human somatic cell therapy and gene therapy. U.S. Food & Drug Administration https://www.fda.gov/downloads/ BiologicsBloodVaccines/ GuidanceComplianceRegulatoryInformation/ Guidances/CellularandGeneTherapy/ucm081670.pdf (1998). 164. European Medicines Agency. Commission Directive 2009/120/EC. European Commission https://ec. europa.eu/health//sites/health/files/files/eudralex/ vol-1/dir_2009_120/dir_2009_120_en.pdf (2009). 165. Hinz, T. et al. The European regulatory environment of RNA-based vaccines. Methods Mol. Biol. 1499, 203–222 (2017). 166. Pepini, T. et al. Induction of an IFN-mediated antiviral response by a self-amplifying RNA vaccine: implications for vaccine design. J. Immunol. 198, 4012–4024 (2017). 167. Theofilopoulos, A. N., Baccala, R., Beutler, B. & Kono, D. H. Type I interferons (α/β) in immunity and autoimmunity. Annu. Rev. Immunol. 23, 307–336 (2005). 168. Nestle, F. O. et al. Plasmacytoid predendritic cells initiate psoriasis through interferon-α production. J. Exp. Med. 202, 135–143 (2005). 169. Fischer, S. et al. Extracellular RNA mediates endothelial-cell permeability via vascular endothelial growth factor. Blood 110, 2457–2465 (2007). 170. Kannemeier, C. et al. Extracellular RNA constitutes a natural procoagulant cofactor in blood coagulation. Proc. Natl Acad. Sci. USA 104, 6388–6393 (2007). 171. Liu, M. A. & Ulmer, J. B. Human clinical trials of plasmid DNA vaccines. Adv. Genet. 55, 25–40 (2005). 172. DeFrancesco, L. The ‘anti-hype’ vaccine. Nat. Biotechnol. 35, 193–197 (2017). 173. Servick, K. On message. Science 355, 446–450 (2017). 174. CureVac AG. From science to patients — ideas become treatments at CureVac. CureVac http://www.curevac. com/research-development (2017). 175. Aldevron. Aldevron expands North Dakota biomanufacturing facility. Aldevron http://www. aldevron.com/about-us/news/aldevron-expands-northdakota-biomanufacturing-facility (2016). 176. Kreiter, S. et al. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature 520, 692–696 (2015). 177. Ott, P. A. et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547, 217–221 (2017). 178. Jacobson, E. B., Caporale, L. H. & Thorbecke, G. J. Effect of thymus cell injections on germinal center formation in lymphoid tissues of nude (thymusless) mice. Cell. Immunol. 13, 416–430 (1974). 179. Forster, R., Emrich, T., Kremmer, E. & Lipp, M. Expression of the G-protein-coupled receptor BLR1 defines mature, recirculating B cells and a subset of T-helper memory cells. Blood 84, 830–840 (1994). 180. Forster, R. et al. A putative chemokine receptor, BLR1, directs B cell migration to defined lymphoid organs and specific anatomic compartments of the spleen. Cell 87, 1037–1047 (1996). 181. Breitfeld, D. et al. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J. Exp. Med. 192, 1545–1552 (2000). 182. Schaerli, P. et al. CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J. Exp. Med. 192, 1553–1562 (2000). 183. Johnston, R. J. et al. Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science 325, 1006–1010 (2009). 184. Nurieva, R. I. et al. Bcl6 mediates the development of T follicular helper cells. Science 325, 1001–1005 (2009). 185. Yu, D. et al. The transcriptional repressor Bcl-6 directs T follicular helper cell lineage commitment. Immunity 31, 457–468 (2009). 186. Crotty, S. A brief history of T cell help to B cells. Nat. Rev. Immunol. 15, 185–189 (2015). 187. Klein, F. et al. Antibodies in HIV-1 vaccine development and therapy. Science 341, 1199–1204 (2013).188. Gils, A., Bertolotto, A., Mulleman, D., BejanAngoulvant, T. & Declerck, P. J. Biopharmaceuticals: reference products and biosimilars to treat inflammatory diseases. Ther. Drug Monit. 39, 308–315 (2017). 189. Sparrow, E., Friede, M., Sheikh, M. & Torvaldsen, S. Therapeutic antibodies for infectious diseases. Bull. World Health Organ. 95, 235–237 (2017). 190. Henricks, L. M., Schellens, J. H., Huitema, A. D. & Beijnen, J. H. The use of combinations of monoclonal antibodies in clinical oncology. Cancer Treat. Rev. 41, 859–867 (2015). 191. Lewiecki, E. M. Treatment of osteoporosis with denosumab. Maturitas 66, 182–186 (2010). 192. Paton, D. M. PCSK9 inhibitors: monoclonal antibodies for the treatment of hypercholesterolemia. Drugs Today 52, 183–192 (2016). 193. Hollevoet, K. & Declerck, P. J. State of play and clinical prospects of antibody gene transfer. J. Transl Med. 15, 131 (2017). 194. Fuchs, S. P. & Desrosiers, R. C. Promise and problems associated with the use of recombinant AAV for the delivery of anti-HIV antibodies. Mol. Ther. Methods Clin. Dev. 3, 16068 (2016). 195. Boczkowski, D., Lee, J., Pruitt, S. & Nair, S. Dendritic cells engineered to secrete anti-GITR antibodies are effective adjuvants to dendritic cell-based immunotherapy. Cancer Gene Ther. 16, 900–911 (2009). 196. Pruitt, S. K. et al. Enhancement of anti-tumor immunity through local modulation of CTLA-4 and GITR by dendritic cells. Eur. J. Immunol. 41, 3553–3563 (2011). 197. Pardi, N. et al. Administration of nucleoside-modified mRNA encoding broadly neutralizing antibody protects humanized mice from HIV-1 challenge. Nat. Commun. 8, 14630 (2017). This is the first study to demonstrate that directly injected, non-replicating mRNA encoding a monoclonal antibody protects animals against an infectious pathogen. 198. Stadler, C. R. et al. Elimination of large tumors in mice by mRNA-encoded bispecific antibodies. Nat. Med. 23, 815–817 (2017). 199. Thran, M. et al. mRNA mediates passive vaccination against infectious agents, toxins, and tumors. EMBO Mol. Med. 9, 1434–1447 (2017). 200. Sebastian, M. et al. Phase Ib study evaluating a selfadjuvanted mRNA cancer vaccine (RNActive®) combined with local radiation as consolidation and maintenance treatment for patients with stage IV nonsmall cell lung cancer. BMC Cancer 14, 748 (2014). 201. Wang, Y. et al. Systemic delivery of modified mRNA encoding herpes simplex virus 1 thymidine kinase for targeted cancer gene therapy. Mol. Ther. 21, 358–367 (2013). 202. Perche, F. et al. Enhancement of dendritic cells transfection in vivo and of vaccination against B16F10 melanoma with mannosylated histidylated lipopolyplexes loaded with tumor antigen messenger RNA. Nanomedicine 7, 445–453 (2011). 203. Mockey, M. et al. mRNA-based cancer vaccine: prevention of B16 melanoma progression and metastasis by systemic injection of MART1 mRNA histidylated lipopolyplexes. Cancer Gene Ther. 14, 802–814 (2007). 204. Uchida, S. et al. Systemic delivery of messenger RNA for the treatment of pancreatic cancer using polyplex nanomicelles with a cholesterol moiety. Biomaterials 82, 221–228 (2016). 205. Lazzaro, S. et al. CD8 T-cell priming upon mRNA vaccination is restricted to bone-marrow-derived antigenpresenting cells and may involve antigen transfer from myocytes. Immunology 146, 312–326 (2015). 206. Van Driessche, A. et al. Clinical-grade manufacturing of autologous mature mRNA-electroporated dendritic cells and safety testing in acute myeloid leukemia patients in a phase I dose-escalation clinical trial. Cytotherapy 11, 653–668 (2009). 207. Van Tendeloo, V. F. et al. Induction of complete and molecular remissions in acute myeloid leukemia by Wilms’ tumor 1 antigen-targeted dendritic cell vaccination. Proc. Natl Acad. Sci. USA 107, 13824–13829 (2010). 208. Berneman, Z. N. et al. Dendritic cell vaccination in malignant pleural mesothelioma: a phase I/II study [abstract]. J. Clin. Oncol. 32 (Suppl.), 7583 (2014). 209. Amin, A. et al. Survival with AGS-003, an autologous dendritic cell-based immunotherapy, in combination with sunitinib in unfavorable risk patients with advanced renal cell carcinoma (RCC): phase 2 study results. J. Immunother. Cancer 3, 14 (2015). 210. Khoury, H. J. et al. Immune responses and long-term disease recurrence status after telomerase-based dendritic cell immunotherapy in patients with acute myeloid leukemia. Cancer 123, 3061–3072 (2017). 211. Sebastian, M. et al. Messenger RNA vaccination in NSCLC: findings from a phase I/IIa clinical trial [abstract]. J. Clin. Oncol. 29 (Suppl.), 2584 (2011). 212. Rausch, S., Schwentner, C., Stenzl, A. & Bedke, J. mRNA vaccine CV9103 and CV9104 for the treatment of prostate cancer. Hum. Vaccin Immunother. 10, 3146–3152 (2014). 213. Mitchell, D. A. et al. Monoclonal antibody blockade of IL-2 receptor α during lymphopenia selectively depletes regulatory T cells in mice and humans. Blood 118, 3003–3012 (2011). 214. Borch, T. H. et al. mRNA-transfected dendritic cell vaccine in combination with metronomic cyclophosphamide as treatment for patients with advanced malignant melanoma. Oncoimmunology 5, e1207842 (2016). 215. Kongsted, P. et al. Dendritic cell vaccination in combination with docetaxel for patients with metastatic castration-resistant prostate cancer: a randomized phase II study. Cytotherapy 19, 500–513 (2017). 216. Kyte, J. A. et al. Immune response and long-term clinical outcome in advanced melanoma patients vaccinated with tumor-mRNA-transfected dendritic cells. Oncoimmunology 5, e1232237 (2016). 217. Vik-Mo, E. O. et al. Therapeutic vaccination against autologous cancer stem cells with mRNA-transfected dendritic cells in patients with glioblastoma. Cancer Immunol. Immunother. 62, 1499–1509 (2013). 218. Lesterhuis, W. J. et al. Immunogenicity of dendritic cells pulsed with CEA peptide or transfected with CEA mRNA for vaccination of colorectal cancer patients. Anticancer Res. 30, 5091–5097 (2010). 219. Aarntzen, E. H. et al. Vaccination with mRNAelectroporated dendritic cells induces robust tumor antigen-specific CD4+ and CD8+ T cells responses in stage III and IV melanoma patients. Clin. Cancer Res. 18, 5460–5470 (2012). 220. Bol, K. F. et al. Long overall survival after dendritic cell vaccination in metastatic uveal melanoma patients. Am. J. Ophthalmol. 158, 939–947 (2014). 221. Bol, K. F. et al. Prophylactic vaccines are potent activators of monocyte-derived dendritic cells and drive effective anti-tumor responses in melanoma patients at the cost of toxicity. Cancer Immunol. Immunother. 65, 327–339 (2016). 222. Weide, B. et al. Results of the first phase I/II clinical vaccination trial with direct injection of mRNA. J. Immunother. 31, 180–188 (2008). 


我们不需要英雄

但我们需要榜样


几只青椒

长按二维码关注



微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
中國現在凴什麽在牛Tfh细胞解析-2022丨体液免疫调节研究的切入点,自身免疫病、感染、疫苗、肿瘤研究方向均有进展重磅!癌症疫苗有望在2030年之前问世!利用mRNA新冠疫苗技术摧毁癌细胞!下一个“嫖娼”的会是谁?孙甘露、毛尖、小白谈21年诺奖得主古尔纳:承继莎翁与《一千零一夜》文学传统,开创非洲书写的新纪元细胞外囊泡装载mRNA的蛋白质替代疗法:一种全新mRNA递送方法为其他基因疗法打开大门全美寄宿前50招生官讲座音频合集!(部分)美国免疫学家:新冠病毒在各地都可能变异,限制中国旅客入境毫无意义Science:岩崎明子团队,用原有的mRNA疫苗、通过黏膜免疫诱导出高效的免疫应答【进展中的科学】mRNA疫苗——免疫学的新纪元(第三部分)【提示】上海主城区(宝山部分)淞宝单元规划获批天文新纪元 | 《环球科学》新刊导读Science:通用流感疫苗有戏!开发出一种针对所有20种已知的流感病毒亚型的实验性mRNA疫苗大彻大悟:5个人生哲理Does the third world benefit from the US-China confrontation?感染后多久可能再阳?二次感染会更严重吗?免疫学专家解读NSR专题:分子筛科学新纪元(特邀编辑:于吉红、赵东元)中国mRNA疫苗开始试生产;新加坡三针mRNA防重症效力是三针灭活的1.9倍清华大学免疫所祁海课题组招聘免疫学、神经免疫学博士后及技术员mRNA疫苗厂商转战肿瘤免疫治疗,癌症疫苗研发曙光初现Science:通用流感疫苗研究突破!开发出针对所有20种已知流感病毒亚型的mRNA疫苗美国首次批准mRNA疫苗之外的新冠疫苗作为加强针;但由于这四个原因,美国民众疫苗接种意愿仍然很低江苏农科院兽医所在猪冠状病毒感染肠道的免疫学研究方面取得重要进展晚讯 |2030年前癌症疫苗或将问世,利用mRNA新冠疫苗技术摧毁癌细胞【进展中的科学】钙钛矿光伏的现状与未来新冠病毒疫苗加强免疫接种又添新方法,上海启动吸入用重组新冠病毒疫苗(5型腺病毒载体)加强免疫接种【真实的科学】谁发现了mRNA?尹哥评书 | 图解免疫学:这就是生命的技法这个肿瘤和免疫疾病的新靶点,中国的科学家和药企能抓住吗?|巡山报告运动产生多巴胺?一图读懂 | 人体最强防护军——免疫系统马斯克抛出推特文件第二部分:黑名单与影子禁令重磅!德国批准科兴疫苗,为内地对等进口复必泰mRNA疫苗铺平道路?新时代中国的非凡十年 (第二部分 创造幸福生活)人才招聘 | 清华大学祁海课题组招聘免疫学、神经免疫学博士后
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。