【进展中的科学】mRNA疫苗——免疫学的新纪元(第三部分)
要点
最近改进的mRNA疫苗,有助于增加蛋白质翻译、调节先天性和适应性免疫原性、改善递送。
在流感病毒、寨卡病毒、狂犬病病毒等动物模型中,mRNA疫苗已引发对传染病靶标的有效免疫。尤其近年来,人们使用了脂质包封或裸的序列优化mRNA。
多种方法mRNA癌症疫苗用于癌症临床试验,包括树突状细胞(DC)疫苗和各种类型的直接注入mRNA。结果显示,一些病例中出现抗原特异性T细胞反应,在某些情况下能延长患者的无病生存期。
治疗中需要考虑的因素和挑战包括:扩大良好生产规范(GMP) 生产、制定法规、进一步记录安全性和提高疗效。
未来重要的研究方向:比较和揭示各种mRNA疫苗激活的免疫路径,以此改进当前方法,并针对其他疾病靶点启动新的临床试验。
摘要
信使核糖核酸(mRNA)疫苗效能高、开发快,有潜力实现低制造成本、给药安全,因此有望替代传统疫苗。然而直到最近,由于mRNA不稳定、体内递送(in vivo delivery)低效,它的应用还很有限。这些问题,很大程度被最近的技术进步所解决,针对传染病和几种癌症的多种mRNA疫苗,在动物模型和人体实验中显现的结果令人鼓舞。本综述详细介绍mRNA疫苗以及将它推向普及治疗的未来方向和挑战。
正文提纲
一、mRNA疫苗药理学基础
二、mRNA疫苗技术的最新进展
1.mRNA翻译与稳定性的优化
2.免疫原性的调节
3.mRNA疫苗传递的进展
三、mRNA抗传染病疫苗
1.自扩增mRNA疫苗
2.树突状细胞mRNA疫苗
3.直接注入非复制mRNA疫苗
四、mRNA癌症疫苗
1.树突状细胞mRNA癌症疫苗
2.直接注入mRNA癌症疫苗
五、医疗考虑和挑战
1.良好生产规范
2.法规
3.安全
六、结论和未来方向
医疗考虑和挑战
1.良好生产规范(GMP)
mRNA通过与重组酶、核糖核苷酸三磷酸(NTP)和DNA模板的体外反应产生;因此,与传统的蛋白质亚基和活病毒或灭活病毒疫苗生产平台相比,它的生产速度快且相对简单。因为反应产量大且容易实现,在设施占地面积小的情况下可以快速GMP生产mRNA。制造过程与序列无关,主要取决于RNA的长度,核苷酸和封端化学以及产物的纯化;然而,某些序列特性(如极端长度)可能会带来困难(D.W.,未发表的观察结果)。根据目前的经验,该过程可以标准化,来产生几乎任何编码的蛋白质免疫原,使其特别适用于对新出现的传染病的快速反应。
mRNA的GMP生产所需的所有酶和反应组分,合成化学品或细菌表达的无动物成分试剂,这些都可以从供应商处获得。从而避免了困扰细胞培养疫苗生产的外源因子的安全问题。所有成分(如质粒DNA、噬菌体聚合酶、封端酶和NTP),都可以作为GMP级可追溯成分随时获得;然而,其中一些目前只能以有限的规模或高成本提供。随着mRNA疗法走向商业化和生产规模的扩大,GMP原料可能会有更经济的选择。
mRNA的GMP生产从DNA模板生产开始,然后是酶促IVT,遵循与研究规模合成相同的多步骤方案,并增加了控制以确保产品的安全性和效力[16]。根据特定的mRNA构建体和化学性质,方案可能会与此处描述的内容略有修改,以适应修饰的核苷,加帽策略或模板去除。生产过程:首先使用限制性内切酶对大肠杆菌产生的模板质粒DNA进行线性化,以允许合成在3'末端具有poly(A)束的径流转录物。接下来,通过噬菌体(如T7、SP6或T3)取决于DNA的RNA聚合酶,从NTP合成mRNA。然后通过与DNase孵育来降解模板DNA。最后,对mRNA进行酶促或化学封端,以实现体内高效翻译。mRNA合成效率高,在优化条件下的数克量级反应中产生超过2 g l−1的全长mRNA。
mRNA合成后,会通过几个纯化步骤进行处理,用以去除反应组分(包括酶、游离核苷酸、残留DNA和截短的RNA片段)。虽然LiCl沉淀通常用于实验室规模的制备,但临床规模的纯化利用批次或柱形式(in batch or column formats)的衍生化微珠(derivatized microbeads),大规模使用会容易些[156,157]。对于某些mRNA平台,去除dsRNA和其他污染物对于最终产物的效力至关重要,因为它是干扰素依赖性翻译抑制的有效诱导剂。这已经通过实验室规模的反相FPLC完成[158],并且正在研究可扩展的水纯化方法。mRNA纯化后,将其交换到最终储存缓冲液中并进行无菌过滤,以便随后填充到小瓶中以供临床使用。RNA容易被酶促和化学途径降解[157]。对配方缓冲液进行测试,以确保它们没有污染的RNase,并且可能含有缓冲液成分,例如抗氧化剂和螯合剂,可最大限度地减少导致mRNA不稳定的活性氧和二价金属离子的影响[159]。
mRNA的药物制剂开发领域很活跃。尽管大多数用于早期研究的产品都是冷冻储存的(-70°C),但人们仍在努力开发在较高温度下稳定的配方,因为希望更适应疫苗分发条件。已发表的报告表明,可以制造稳定的冷藏或室温配方。据报道,RNActive 平台在冻干并在 5–25 °C 下储存 3 年和在 40 °C 下储存 6 个月后具有活性[91]。另一份报告表明,冷冻干燥的裸mRNA在冷藏条件下至少可稳定保存10个月[160]。mRNA产品的稳定性也可以通过包装在纳米颗粒内或与RNase抑制剂共同配制来提高[161]。对于脂质包封的mRNA,已经观察到至少6个月的稳定性(Arbutus Biopharma,个人通讯),但尚未报道这种mRNA-脂质复合物以未冷冻形式长期储存的报道。
2.法规
FDA 或欧洲药品管理局 (EMA) 没有针对 mRNA 疫苗产品的具体指南。然而,在EMA和FDA监督下进行的临床试验数量不断增加,这表明监管机构已经接受了各种组织提出的方法,用以证明产品是安全的,并且可以在人体中进行测试。由于mRNA属于广泛的疫苗类别,因此为DNA疫苗[162]和基因治疗载体[163,164]定义的许多指导原则可能适用于mRNA,并进行一些调整以反映mRNA的独特特征。Hinz及其同事对RNA疫苗的EMA法规进行了详细审查,强调了预防性传染病与治疗应用规定的不同监管途径[165]。 无论现有指南中的具体分类如何,在这些指导文件中的规定及最近发表的临床研究报告中都可以观察到一些主旋律。特别值得关注的是,最近针对流感病毒的mRNA疫苗的报告强调了临床前和临床数据,这些数据证明了小鼠的生物分布和持久性、相关动物模型(雪貂)中的疾病保护以及人类的免疫原性、局部反应原性和毒性[22]。随着mRNA产品在疫苗领域变得越来越突出,很可能会制定具体的指南,描述生产和评估新mRNA疫苗的要求。
3.安全性
现代预防性疫苗的安全性要求非常严格,因为疫苗是给健康个体接种的。由于mRNA的制造过程不需要可能被外源病毒污染的有毒化学品或细胞培养物,因此mRNA生产避免了与其他疫苗平台相关的常见风险,包括活病毒、病毒载体、灭活病毒和亚单位蛋白疫苗。此外,mRNA的制造时间短,引入污染微生物的机会很少。在接种疫苗的人群中,感染或将载体整合到宿主细胞DNA中的理论风险不是mRNA的问题。由于上述原因,mRNA疫苗被认为是一种相对安全的疫苗形式。
对几种不同的mRNA疫苗已进行了测试,从I期到IIb期临床研究,并证明它们是安全的,耐受性良好(表2,3)。然而,最近的人体试验表明,有些mRNA,会出现中度(少数情况下的严重)注射部位或全身反应[22,91]。在未来的临床前和临床研究中,可能评估的潜在安全问题包括局部和全身炎症,表达免疫原的生物分布和持久性,自身反应抗体的刺激以及任何非天然核苷酸和递送系统组分的潜在毒性作用。一个问题是,一些基于mRNA的疫苗平台诱导有效的I型干扰素反应[54,166],不仅与炎症有关而且可能与自身免疫有关(autoimmunity)[167,168]。因此,要在mRNA疫苗接种之前识别自身免疫反应风险大的个体,以便采取合理的预防措施。另一个潜在的安全问题,可能源于mRNA疫苗接种期间细胞外RNA的存在。细胞外裸RNA已被证明可以增加紧密堆积的内皮细胞的通透性,因此可能导致水肿[169]。另一项研究表明,细胞外RNA促进血液凝固和病理性血栓形成[170]。因此,安全性需要继续评估,因为不同的mRNA模式和递送系统首次在人体中使用,并在更大的患者群体中进行测试。
结论和未来方向
目前,mRNA疫苗正在经历基础和临床研究的爆发。仅在过去两年,就数十份临床前和临床报告发布,这说明疫苗技术是有效的。虽然mRNA疫苗的大多数早期工作都集中在癌症应用上,但最近的一些报告已经证明了mRNA在预防多种传染性病原体方面的效力和多功能性,包括流感病毒、埃博拉病毒、寨卡病毒、链球菌属和弓形虫(表 1, 表2)。
虽然临床前研究让人们乐观看待mRNA疫苗的前景和优势,但最近的两份临床报告削弱了期待[22,91]。在这两项试验中,人类的免疫原性比基于动物模型的预期更微弱,接近DNA疫苗中所观察到的[171],而副作用却大到无法忽视。我们必须认识到,这些试验仅代表mRNA疫苗平台中的两种,当疫苗的表达和免疫刺激特征改变时,可能会存在实质性差异。需要进一步的研究来确定不同的动物物种如何对mRNA疫苗成分和炎症信号作出反应,以及哪些免疫信号传导途径对人类最有效。
最近人们加深了理解,也降低了mRNA先天免疫传感。这些进展不仅有助于主动疫苗接种(active vaccination),而且有助于在传染病和癌症中应用被动免疫或被动免疫疗法(passive immunization or passive immunotherapy)(框注 4)。mRNA表达平台之间的直接比较,可以阐明哪些系统最适合被动和主动免疫。鉴于大量mRNA平台前途光明,进一步的一对一比较给疫苗领域带来的价值最大,因为这将使研究人员能够将资源集中在最适合每种应用的平台上。
mRNA疫苗的快速进展,要感谢最近在RNA先天免疫传感和体内递送方法领域的重大进展。对RNA以及脂质和聚合物生物化学的广泛基础研究,让mRNA疫苗转化为临床试验成为可能,带来对mRNA疫苗公司的惊人投资(表 4)。Moderna Therapeutics成立于2010年,已筹集了近20亿美元的资金,计划将基于mRNA的疫苗和疗法商业化[172,173]。美国生物医学高级研究与发展局 (BARDA) 已承诺支持 Moderna 对有前途的核苷修饰寨卡病毒 mRNA 疫苗 (NCT03014089) 的临床评估。在德国,CureVac AG拥有不断扩大的治疗靶点组合[174],包括癌症和传染病,BioNTech正在开发一种使用mRNA疫苗[121]的个性化癌症药物的创新方法(框注 2)。新英格兰生物实验室和Aldevron等公司[175],将定制GMP产品商业化,也使基础研究转化为临床试验变得更加方便。最近启动的流行病防范创新联盟(CEPI)为未来应对新出现的病毒流行病提供了极大的乐观。这一跨国公共和私人伙伴关系旨在筹集10亿美元,用于开发基于平台的疫苗(如mRNA),以便在新出现的疫情失控之前迅速遏制疫情。
框注 4: 基于mRNA的被动免疫疗法
重组单克隆抗体正在迅速改变制药市场,并已成为治疗自身免疫性疾病、传染病、骨质疏松症、高胆固醇血症和癌症最成功的治疗类别之一[188-192]。然而,蛋白质生产高成本高,系统给药需求额频繁,限制了广泛可及性。抗体基因转移技术有可能克服这些困难,因为它们向患者施用编码单克隆抗体的核苷酸序列,从而能够在体内生产适当折叠和修饰的蛋白质疗法[193]。人们已经研究了多种基因治疗载体(例如,病毒载体和质粒DNA),这些载体具有局限性(例如预先存在的宿主免疫、获得性抗载体免疫、高先天免疫原性、抗体产生的体内调节困难和毒性作用[193,194])。mRNA疗法结合了安全性与精细的剂量控制,无预先存在或抗载体免疫的有多次给药的可能性。两份早期报告表明,用编码针对免疫抑制蛋白的抗体的mRNA电穿孔的树突状细胞(DC)在小鼠中分泌功能抗体并改善免疫反应[195,196]。最近的三篇出版物描述了注射mRNA在体内生产治疗性抗体的应用:Pardi及其同事证明,用脂质纳米颗粒(LNP)包封的核苷修饰mRNA向小鼠单次静脉注射,编码抗HIV-1中和抗体VRC01的重链和轻链,可在血清中迅速产生高水平的功能抗体,并保护人源化小鼠免受HIV-1感染[197];Stadler及其同事证明,静脉内施用编码各种抗癌双特异性抗体的低剂量TransIT(Mirus Bio LLC)复合核苷修饰mRNA导致小鼠模型中大肿瘤的消除[198];Thran及其同事[199]利用未修饰的mRNA-LNP递送系统[12]表达三种单克隆抗体,其水平可防止狂犬病病毒、肉毒杆菌毒素和B细胞淋巴瘤细胞系的致命挑战。在这些研究中均未观察到毒性作用。这些观察结果表明,mRNA为治疗性单克隆抗体蛋白递送提供了一种安全,简单和有效的替代方案,并可能应用于任何治疗性蛋白质。
Institution | mRNA technology | Partners | Indication (disease target) |
---|---|---|---|
Argos Biotechnology | mRNA neoantigens (Arcelis platform) | NA | Individualized cancer vaccines, HIV-1 |
BioNTech RNA Pharmaceuticals GmbH | Nucleoside-modified mRNA (IVAC Mutanome, FixVAC) | Genentech/Roche | Individualized cancer vaccines |
Bayer AG | Veterinary vaccines | ||
CureVac AG | Sequence-optimized, purified mRNA (RNActive, RNArt, RNAdjuvant) | Boehringer Ingelheim GmbH | Cancer vaccines (lung cancer) |
Johnson & Johnson | Viral vaccines | ||
Sanofi Pasteur | Infectious disease vaccines | ||
BMGF | Infectious disease vaccines | ||
IAVI | HIV vaccines | ||
eTheRNA Immunotherapies | Purified mRNA (TriMix) | NA | Cancer (melanoma, breast), viral vaccines (HBV and/or HPV) |
GlaxoSmithKline/Novartis | Self-amplifying mRNA (SAM) (alphavirus replicon) | NA | Infectious disease vaccines |
Moderna Therapeutics | Nucleoside-modified mRNA | Merck & Co. | Individualized cancer vaccines, viral vaccines |
BMGF, DARPA, BARDA | Viral vaccines (influenza virus, CMV, HMPV, PIV, chikungunya virus, Zika virus) | ||
University of Pennsylvania | Nucleoside-modified, purified mRNA | NA | Infectious disease vaccines |
BARDA, Biomedical Advanced Research and Development Authority; BMGF, Bill & Melinda Gates Foundation; CMV, cytomegalovirus; DARPA, Defense Advanced Research Projects Agency; HBV, hepatitis B virus; HMPV, human metapneumovirus; HPV, human papillomavirus; IAVI, International AIDS Vaccine Initiative; NA, not available; PIV, parainfluenza virus.
(完结)
参考文献
1.World Health Organization. Immunization coverage. World Health Organization http://www.who.int/ mediacentre/factsheets/fs378/en (2017). 2. Younger, D. S., Younger, A. P. & Guttmacher, S. Childhood vaccination: implications for global and domestic public health. Neurol. Clin. 34, 1035–1047 (2016). 3. Plotkin, S. A. Vaccines: the fourth century. Clin. Vaccine Immunol. 16, 1709–1719 (2009). 4. Rodrigues, C. M. C., Pinto, M. V., Sadarangani, M. & Plotkin, S. A. Whither vaccines? J. Infect. 74 (Suppl. 1), S2–S9 (2017). 5. Wolff, J. A. et al. Direct gene transfer into mouse muscle in vivo. Science 247, 1465–1468 (1990). This study demonstrates protein production from RNA administered in vivo. 6. Jirikowski, G. F., Sanna, P. P., Maciejewski-Lenoir, D. & Bloom, F. E. Reversal of diabetes insipidus in Brattleboro rats: intrahypothalamic injection of vasopressin mRNA. Science 255, 996–998 (1992). 7. Suschak, J. J., Williams, J. A. & Schmaljohn, C. S. Advancements in DNA vaccine vectors, non-mechanical delivery methods, and molecular adjuvants to increase immunogenicity. Hum. Vaccin. Immunother. 13, 2837–2848 (2017). 8. Tandrup Schmidt, S., Foged, C., Korsholm, K. S., Rades, T. & Christensen, D. Liposome-based adjuvants for subunit vaccines: formulation strategies for subunit antigens and immunostimulators. Pharmaceutics 8, E7 (2016). 9. Kariko, K. et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol. Ther. 16, 1833–1840 (2008). 10. Kauffman, K. J., Webber, M. J. & Anderson, D. G. Materials for non-viral intracellular delivery of messenger RNA therapeutics. J. Control. Release 240, 227–234 (2016). 11. Guan, S. & Rosenecker, J. Nanotechnologies in delivery of mRNA therapeutics using nonviral vectorbased delivery systems. Gene Ther. 24, 133–143 (2017). 12. Thess, A. et al. Sequence-engineered mRNA without chemical nucleoside modifications enables an effective protein therapy in large animals. Mol. Ther. 23, 1456–1464 (2015). 13. Kariko, K., Muramatsu, H., Ludwig, J. & Weissman, D. Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleosidemodified, protein-encoding mRNA. Nucleic Acids Res. 39, e142 (2011). This study demonstrates the importance of purification of IVT mRNA in achieving potent protein translation and in suppressing inflammatory responses. 14. Weissman, D. mRNA transcript therapy. Expert Rev. Vaccines 14, 265–281 (2015). 15. Sahin, U., Kariko, K. & Tureci, O. mRNA-based therapeutics — developing a new class of drugs. Nat. Rev. Drug Discov. 13, 759–780 (2014). This is a useful Review covering vaccine and non-vaccine forms of mRNA therapeutics. 16. Pardi, N., Muramatsu, H., Weissman, D. & Kariko, K. In vitro transcription of long RNA containing modified nucleosides. Methods Mol. Biol. 969, 29–42 (2013). 17. Tsui, N. B., Ng, E. K. & Lo, Y. M. Stability of endogenous and added RNA in blood specimens, serum, and plasma. Clin. Chem. 48, 1647–1653 (2002). 18. Petsch, B. et al. Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infection. Nat. Biotechnol. 30, 1210–1216 (2012). This study demonstrates that directly injected, non-replicating mRNA can induce protective immune responses against an infectious pathogen. 19. Geall, A. J. et al. Nonviral delivery of self-amplifying RNA vaccines. Proc. Natl Acad. Sci. USA 109, 14604–14609 (2012). This important study demonstrates that the duration of in vivo protein production from RNA replicons can be greatly improved by packaging them into lipid nanoparticles. 20. Pardi, N. et al. Zika virus protection by a single lowdose nucleoside-modified mRNA vaccination. Nature 543, 248–251 (2017). 21. Pardi, N. et al. Expression kinetics of nucleosidemodified mRNA delivered in lipid nanoparticles to mice by various routes. J. Control. Release 217, 345–351 (2015). 22. Bahl, K. et al. Preclinical and clinical demonstration of immunogenicity by mRNA vaccines against H10N8 and H7N9 influenza viruses. Mol. Ther. 25, 1316–1327 (2017). This is a report of a clinical vaccine trial using directly injected, non-replicating, nucleoside-modified mRNA against an infectious pathogen. 23. Ross, J. & Sullivan, T. D. Half-lives of beta and gamma globin messenger RNAs and of protein synthetic capacity in cultured human reticulocytes. Blood 66, 1149–1154 (1985). 24. Holtkamp, S. et al. Modification of antigen-encoding RNA increases stability, translational efficacy, and T-cell stimulatory capacity of dendritic cells. Blood 108, 4009–4017 (2006). 25. Gallie, D. R. The cap and poly(A) tail function synergistically to regulate mRNA translational efficiency. Genes Dev. 5, 2108–2116 (1991). 26. Martin, S. A., Paoletti, E. & Moss, B. Purification of mRNA guanylyltransferase and mRNA (guanine-7-) methyltransferase from vaccinia virions. J. Biol. Chem. 250, 9322–9329 (1975). 27. Stepinski, J., Waddell, C., Stolarski, R., Darzynkiewicz, E. & Rhoads, R. E. Synthesis and properties of mRNAs containing the novel “anti-reverse” cap analogs 7-methyl(3ʹ-O-methyl)GpppG and 7-methyl (3ʹ-deoxy)GpppG. RNA 7, 1486–1495 (2001). 28. Malone, R. W., Felgner, P. L. & Verma, I. M. Cationic liposome-mediated RNA transfection. Proc. Natl Acad. Sci. USA 86, 6077–6081 (1989). 29. Gustafsson, C., Govindarajan, S. & Minshull, J. Codon bias and heterologous protein expression. Trends Biotechnol. 22, 346–353 (2004). 30. Mauro, V. P. & Chappell, S. A. A critical analysis of codon optimization in human therapeutics. Trends Mol. Med. 20, 604–613 (2014). 31. Kudla, G., Lipinski, L., Caffin, F., Helwak, A. & Zylicz, M. High guanine and cytosine content increases mRNA levels in mammalian cells. PLoS Biol. 4, e180 (2006). 32. Kudla, G., Murray, A. W., Tollervey, D. & Plotkin, J. B. Coding-sequence determinants of gene expression in Escherichia coli. Science 324, 255–258 (2009). 33. Buhr, F. et al. Synonymous codons direct cotranslational folding toward different protein conformations. Mol. Cell 61, 341–351 (2016). 34. Yu, C. H. et al. Codon usage influences the local rate of translation elongation to regulate co-translational protein folding. Mol. Cell 59, 744–754 (2015). 35. Chen, N. et al. RNA sensors of the innate immune system and their detection of pathogens. IUBMB Life 69, 297–304 (2017). 36. Fotin-Mleczek, M. et al. Messenger RNA-based vaccines with dual activity induce balanced TLR-7 dependent adaptive immune responses and provide antitumor activity. J. Immunother. 34, 1–15 (2011). 37. Rettig, L. et al. Particle size and activation threshold: a new dimension of danger signaling. Blood 115, 4533–4541 (2010). 38. de Haro, C., Mendez, R. & Santoyo, J. The eIF-2α kinases and the control of protein synthesis. FASEB J. 10, 1378–1387 (1996). 39. Liang, S. L., Quirk, D. & Zhou, A. RNase L: its biological roles and regulation. IUBMB Life 58, 508–514 (2006). 40. Zhang, Z. et al. Structural analysis reveals that Tolllike receptor 7 is a dual receptor for guanosine and single-stranded RNA. Immunity 45, 737–748 (2016). 41. Tanji, H. et al. Toll-like receptor 8 senses degradation products of single-stranded RNA. Nat. Struct. Mol. Biol. 22, 109–115 (2015). 42. Isaacs, A., Cox, R. A. & Rotem, Z. Foreign nucleic acids as the stimulus to make interferon. Lancet 2, 113–116 (1963). 43. Schwartz, S. et al. Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA. Cell 159, 148–162 (2014). 44. Carlile, T. M. et al. Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature 515, 143–146 (2014). 45. Andries, O. et al. N1-methylpseudouridine-incorporated mRNA outperforms pseudouridine-incorporated mRNA by providing enhanced protein expression and reduced immunogenicity in mammalian cell lines and mice. J. Control. Release 217, 337–344 (2015). 46. Anderson, B. R. et al. Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation. Nucleic Acids Res. 38, 5884–5892 (2010). 47. Anderson, B. R. et al. Nucleoside modifications in RNA limit activation of 2ʹ-5ʹ-oligoadenylate synthetase and increase resistance to cleavage by RNase L. Nucleic Acids Res. 39, 9329–9338 (2011). 48. Kariko, K., Buckstein, M., Ni, H. & Weissman, D. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23, 165–175 (2005). This report demonstrates that nucleoside modification of mRNA decreases inflammatory responses. 49. Kauffman, K. J. et al. Efficacy and immunogenicity of unmodified and pseudouridine-modified mRNA delivered systemically with lipid nanoparticles in vivo. Biomaterials 109, 78–87 (2016). 50. Brito, L. A. et al. A cationic nanoemulsion for the delivery of next-generation RNA vaccines. Mol. Ther. 22, 2118–2129 (2014). 51. Van Lint, S. et al. The ReNAissanCe of mRNA-based cancer therapy. Expert Rev. Vaccines 14, 235–251 (2015). 52. Kallen, K. J. et al. A novel, disruptive vaccination technology: self-adjuvanted RNActive® vaccines. Hum. Vaccin Immunother. 9, 2263–2276 (2013). 53. Rauch, S., Lutz, J., Kowalczyk, A., Schlake, T. & Heidenreich, R. RNActive® technology: generation and testing of stable and immunogenic mRNA vaccines. Methods Mol. Biol. 1499, 89–107 (2017). 54. Edwards, D. K. et al. Adjuvant effects of a sequenceengineered mRNA vaccine: translational profiling demonstrates similar human and murine innate response. J. Transl Med. 15, 1 (2017). 55. Kowalczyk, A. et al. Self-adjuvanted mRNA vaccines induce local innate immune responses that lead to a potent and boostable adaptive immunity. Vaccine 34, 3882–3893 (2016). 56. Schnee, M. et al. An mRNA vaccine encoding rabies virus glycoprotein induces protection against lethal infection in mice and correlates of protection in adult and newborn pigs. PLoS Negl. Trop. Dis. 10, e0004746 (2016). 57. Ziegler, A. et al. A new RNA-based adjuvant enhances virus-specific vaccine responses by locally triggering TLR- and RLH-dependent effects. J. Immunol. 198, 1595–1605 (2017). 58. Benteyn, D., Heirman, C., Bonehill, A., Thielemans, K. & Breckpot, K. mRNA-based dendritic cell vaccines. Expert Rev. Vaccines 14, 161–176 (2015). 59. Kranz, L. M. et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 534, 396–401 (2016). 60. Wykes, M., Pombo, A., Jenkins, C. & MacPherson, G. G. Dendritic cells interact directly with naive B lymphocytes to transfer antigen and initiate class switching in a primary T-dependent response. J. Immunol. 161, 1313–1319 (1998). 61. Selmi, A. et al. Uptake of synthetic naked RNA by skin-resident dendritic cells via macropinocytosis allows antigen expression and induction of T-cell responses in mice. Cancer Immunol. Immunother. 65, 1075–1083 (2016). 62. Diken, M. et al. Selective uptake of naked vaccine RNA by dendritic cells is driven by macropinocytosis and abrogated upon DC maturation. Gene Ther. 18, 702–708 (2011). 63. Lorenz, C. et al. Protein expression from exogenous mRNA: uptake by receptor-mediated endocytosis and trafficking via the lysosomal pathway. RNA Biol. 8, 627–636 (2011). 64. Gehl, J. Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research. Acta Physiol. Scand. 177, 437–447 (2003). 65. Granstein, R. D., Ding, W. & Ozawa, H. Induction of anti-tumor immunity with epidermal cells pulsed with tumor-derived RNA or intradermal administration of RNA. J. Invest. Dermatol. 114, 632–636 (2000). 66. Kreiter, S. et al. Intranodal vaccination with naked antigen-encoding RNA elicits potent prophylactic and therapeutic antitumoral immunity. Cancer Res. 70, 9031–9040 (2010). 67. Bialkowski, L. et al. Intralymphatic mRNA vaccine induces CD8 T-cell responses that inhibit the growth of mucosally located tumours. Sci. Rep. 6, 22509 (2016). 68. Sahin, U. et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547, 222–226 (2017). 69. Qiu, P., Ziegelhoffer, P., Sun, J. & Yang, N. S. Gene gun delivery of mRNA in situ results in efficient transgene expression and genetic immunization. Gene Ther. 3, 262–268 (1996). 70. Steitz, J., Britten, C. M., Wolfel, T. & Tuting, T. Effective induction of anti-melanoma immunity following genetic vaccination with synthetic mRNA coding for the fusion protein EGFP.TRP2. Cancer Immunol. Immunother. 55, 246–253 (2006). 71. Aberle, J. H., Aberle, S. W., Kofler, R. M. & Mandl, C. W. Humoral and cellular immune response to RNA immunization with flavivirus replicons derived from tick-borne encephalitis virus. J. Virol. 79, 15107–15113 (2005). 72. Kofler, R. M. et al. Mimicking live flavivirus immunization with a noninfectious RNA vaccine. Proc. Natl Acad. Sci. USA 101, 1951–1956 (2004). 73. Mandl, C. W. et al. In vitro-synthesized infectious RNA as an attenuated live vaccine in a flavivirus model. Nat. Med. 4, 1438–1440 (1998). 74. Johansson, D. X., Ljungberg, K., Kakoulidou, M. & Liljestrom, P. Intradermal electroporation of naked replicon RNA elicits strong immune responses. PLoS ONE 7, e29732 (2012). 75. Piggott, J. M., Sheahan, B. J., Soden, D. M., O’Sullivan, G. C. & Atkins, G. J. Electroporation of RNA stimulates immunity to an encoded reporter gene in mice. Mol. Med. Rep. 2, 753–756 (2009). 76. Broderick, K. E. & Humeau, L. M. Electroporationenhanced delivery of nucleic acid vaccines. Expert Rev. Vaccines 14, 195–204 (2015). 77. Hoerr, I., Obst, R., Rammensee, H. G. & Jung, G. In vivo application of RNA leads to induction of specific cytotoxic T lymphocytes and antibodies. Eur. J. Immunol. 30, 1–7 (2000). 78. Schlake, T., Thess, A., Fotin-Mleczek, M. & Kallen, K. J. Developing mRNA-vaccine technologies. RNA Biol. 9, 1319–1330 (2012). 79. Reichmuth, A. M., Oberli, M. A., Jeklenec, A., Langer, R. & Blankschtein, D. mRNA vaccine delivery using lipid nanoparticles. Ther. Deliv. 7, 319–334 (2016). 80. Midoux, P. & Pichon, C. Lipid-based mRNA vaccine delivery systems. Expert Rev. Vaccines 14, 221–234 (2015). 81. Kanasty, R., Dorkin, J. R., Vegas, A. & Anderson, D. Delivery materials for siRNA therapeutics. Nat. Mater. 12, 967–977 (2013). 82. Akinc, A. et al. Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol. Ther. 18, 1357–1364 (2010). 83. Ratajczak, M. Z. & Ratajczak, J. Horizontal transfer of RNA and proteins between cells by extracellular microvesicles: 14 years later. Clin. Transl Med. 5, 7 (2016). 84. Tam, H. H. et al. Sustained antigen availability during germinal center initiation enhances antibody responses to vaccination. Proc. Natl Acad. Sci. USA 113, E6639–E6648 (2016). 85. Richner, J. M. et al. Modified mRNA Vaccines protect against Zika virus infection. Cell 168, 1114–1125.e10 (2017). 86. Havenar-Daughton, C., Lee, J. H. & Crotty, S. Tfh cells and HIV bnAbs, an immunodominance model of the HIV neutralizing antibody generation problem. Immunol. Rev. 275, 49–61 (2017). 87. Brito, L. A. et al. Self-amplifying mRNA vaccines. Adv. Genet. 89, 179–233 (2015). 88. Chahal, J. S. et al. An RNA nanoparticle vaccine against Zika virus elicits antibody and CD8+ T cell responses in a mouse model. Sci. Rep. 7, 252 (2017). 89. Chahal, J. S. et al. Dendrimer-RNA nanoparticles generate protective immunity against lethal Ebola, H1N1 influenza, and Toxoplasma gondii challenges with a single dose. Proc. Natl Acad. Sci. USA 113, E4133–E4142 (2016). 90. Ulmer, J. B. & Geall, A. J. Recent innovations in mRNA vaccines. Curr. Opin. Immunol. 41, 18–22 (2016). 91. Alberer, M. et al. Safety and immunogenicity of a mRNA rabies vaccine in healthy adults: an open-label, non-randomised, prospective, first-in-human phase 1 clinical trial. Lancet 390, 1511–1520 (2017). This is a report of a clinical vaccine trial using directly injected, non-replicating, unmodified mRNA against an infectious pathogen. 92. Perri, S. et al. An alphavirus replicon particle chimera derived from venezuelan equine encephalitis and sindbis viruses is a potent gene-based vaccine delivery vector. J. Virol. 77, 10394–10403 (2003). 93. Fleeton, M. N. et al. Self-replicative RNA vaccines elicit protection against influenza A virus, respiratory syncytial virus, and a tickborne encephalitis virus. J. Infect. Dis. 183, 1395–1398 (2001). This is an early report of the protective efficacy that results from self-amplifying mRNA vaccines against infectious pathogens. 94. Magini, D. et al. Self-amplifying mRNA vaccines expressing multiple conserved influenza antigens confer protection against homologous and heterosubtypic viral challenge. PLoS ONE 11, e0161193 (2016). 95. Hekele, A. et al. Rapidly produced SAM® vaccine against H7N9 influenza is immunogenic in mice. Emerg. Microbes Infect. 2, e52 (2013). 96. Brazzoli, M. et al. Induction of broad-based immunity and protective efficacy by self-amplifying mRNA vaccines encoding influenza virus hemagglutinin. J. Virol. 90, 332–344 (2015). 97. Bogers, W. M. et al. Potent immune responses in rhesus macaques induced by nonviral delivery of a self-amplifying RNA vaccine expressing HIV type 1 envelope with a cationic nanoemulsion. J. Infect. Dis. 211, 947–955 (2015). 98. McCullough, K. C. et al. Self-replicating replicon-RNA delivery to dendritic cells by chitosan-nanoparticles for translation in vitro and in vivo. Mol. Ther. Nucleic Acids 3, e173 (2014). 99. Demoulins, T. et al. Polyethylenimine-based polyplex delivery of self-replicating RNA vaccines. Nanomedicine 12, 711–722 (2016). 100. Maruggi, G. et al. Immunogenicity and protective efficacy induced by self-amplifying mRNA vaccines encoding bacterial antigens. Vaccine 35, 361–368 (2017). 101. Van Gulck, E. et al. mRNA-based dendritic cell vaccination induces potent antiviral T-cell responses in HIV-1-infected patients. AIDS 26, F1–F12 (2012). 102. Routy, J. P. et al. Immunologic activity and safety of autologous HIV RNA-electroporated dendritic cells in HIV-1 infected patients receiving antiretroviral therapy. Clin. Immunol. 134, 140–147 (2010). 103. Allard, S. D. et al. A phase I/IIa immunotherapy trial of HIV-1-infected patients with Tat, Rev and Nef expressing dendritic cells followed by treatment interruption. Clin. Immunol. 142, 252–268 (2012). 104. Gandhi, R. T. et al. Immunization of HIV-1-infected persons with autologous dendritic cells transfected with mRNA encoding HIV-1 Gag and Nef: results of a randomized, placebo-controlled clinical trial. J. Acquir. Immune Def. Syndr. 71, 246–253 (2016). 105. Jacobson, J. M. et al. Dendritic cell immunotherapy for HIV-1 infection using autologous HIV-1 RNA: a randomized, double-blind, placebo-controlled clinical trial. J. Acquir. Immune Def. Syndr. 72, 31–38 (2016). 106. Gay, C. L. et al. Immunogenicity of AGS-004 dendritic cell therapy in patients treated during acute HIV infection. AIDS Res. Hum. Retroviruses http://dx.doi. org/10.1089/aid.2017.0071 (2017). 107. Van Craenenbroeck, A. H. et al. Induction of cytomegalovirus-specific T cell responses in healthy volunteers and allogeneic stem cell recipients using vaccination with messenger RNA-transfected dendritic cells. Transplantation 99, 120–127 (2015). 108. Martinon, F. et al. Induction of virus-specific cytotoxic T lymphocytes in vivo by liposome-entrapped mRNA. Eur. J. Immunol. 23, 1719–1722 (1993). This early study demonstrates that liposome-encapsulated mRNA encoding a viral antigen induces T cell responses. 109. Pollard, C. et al. Type I IFN counteracts the induction of antigen-specific immune responses by lipid-based delivery of mRNA vaccines. Mol. Ther. 21, 251–259 (2013). 110. Zhao, M., Li, M., Zhang, Z., Gong, T. & Sun, X. Induction of HIV-1 gag specific immune responses by cationic micelles mediated delivery of gag mRNA. Drug Deliv. 23, 2596–2607 (2016). 111. Li, M. et al. Enhanced intranasal delivery of mRNA vaccine by overcoming the nasal epithelial barrier via intra- and paracellular pathways. J. Control. Release 228, 9–19 (2016). 112. Richner, J. M. et al. Vaccine mediated protection against Zika virus-induced congenital disease. Cell 170, 273–283.e12 (2017). 113. Roman, F., Vaman, T., Kafeja, F., Hanon, E. & Van Damme, P. AS03(A)-adjuvanted influenza A (H1N1) 2009 vaccine for adults up to 85 years of age. Clin. Infect. Dis. 51, 668–677 (2010). 114. Zarei, S. et al. Immunogenicity and reactogenicity of two diphtheria-tetanus-whole cell pertussis vaccines in Iranian pre-school children, a randomized controlled trial. Hum. Vaccin. Immunother. 9, 1316–1322 (2013). 115. Diken, M., Kranz, L. M., Kreiter, S. & Sahin, U. mRNA: a versatile molecule for cancer vaccines. Curr. Issues Mol. Biol. 22, 113–128 (2017). 116. Fiedler, K., Lazzaro, S., Lutz, J., Rauch, S. & Heidenreich, R. mRNA cancer vaccines. Recent Results Cancer Res. 209, 61–85 (2016). 117. Grunwitz, C. & Kranz, L. M. mRNA cancer vaccinesmessages that prevail. Curr. Top. Microbiol. Immunol. 405, 145–164 (2017). 118. McNamara, M. A., Nair, S. K. & Holl, E. K. RNA-Based Vaccines in Cancer Immunotherapy. J. Immunol. Res. 2015, 794528 (2015). 119. Sullenger, B. A. & Nair, S. From the RNA world to the clinic. Science 352, 1417–1420 (2016). 120. Vigneron, N. Human tumor antigens and cancer immunotherapy. Biomed. Res. Int. 2015, 948501 (2015). 121. Tureci, O. et al. Targeting the heterogeneity of cancer with individualized neoepitope vaccines. Clin. Cancer Res. 22, 1885–1896 (2016). 122. Coulie, P. G., Van den Eynde, B. J., van der Bruggen, P. & Boon, T. Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat. Rev. Cancer 14, 135–146 (2014). 123. Conry, R. M. et al. Characterization of a messenger RNA polynucleotide vaccine vector. Cancer Res. 55, 1397–1400 (1995). 124. Boczkowski, D., Nair, S. K., Snyder, D. & Gilboa, E. Dendritic cells pulsed with RNA are potent antigenpresenting cells in vitro and in vivo. J. Exp. Med. 184, 465–472 (1996). This report demonstrates the efficacy of mRNA DC vaccines. 125. De Keersmaecker, B. et al. The combination of 4-1BBL and CD40L strongly enhances the capacity of dendritic cells to stimulate HIV-specific T cell responses. J. Leukoc. Biol. 89, 989–999 (2011). 126. Dannull, J. et al. Enhancing the immunostimulatory function of dendritic cells by transfection with mRNA encoding OX40 ligand. Blood 105, 3206–3213 (2005). 127. Aerts-Toegaert, C. et al. CD83 expression on dendritic cells and T cells: correlation with effective immune responses. Eur. J. Immunol. 37, 686–695 (2007). 128. Grunebach, F. et al. Cotransfection of dendritic cells with RNA coding for HER-2/neu and 4-1BBL increases the induction of tumor antigen specific cytotoxic T lymphocytes. Cancer Gene Ther. 12, 749–756 (2005). 129. Bontkes, H. J., Kramer, D., Ruizendaal, J. J., Meijer, C. J. & Hooijberg, E. Tumor associated antigen and interleukin-12 mRNA transfected dendritic cells enhance effector function of natural killer cells and antigen specific T-cells. Clin. Immunol. 127, 375–384 (2008). 130. Bontkes, H. J. et al. Dendritic cells transfected with interleukin-12 and tumor-associated antigen messenger RNA induce high avidity cytotoxic T cells. Gene Ther. 14, 366–375 (2007). 131. Dorrie, J. et al. Introduction of functional chimeric E/L-selectin by RNA electroporation to target dendritic cells from blood to lymph nodes. Cancer Immunol. Immunother. 57, 467–477 (2008). 132. Bonehill, A. et al. Enhancing the T-cell stimulatory capacity of human dendritic cells by co-electroporation with CD40L, CD70 and constitutively active TLR4 encoding mRNA. Mol. Ther. 16, 1170–1180 (2008). This is a description of the TriMix mRNA adjuvant cocktail. 133. Van Lint, S. et al. Preclinical evaluation of TriMix and antigen mRNA-based antitumor therapy. Cancer Res. 72, 1661–1671 (2012). 134. Van Lint, S. et al. Optimized dendritic cell-based immunotherapy for melanoma: the TriMix-formula. Cancer Immunol. Immunother. 63, 959–967 (2014). 135. Pen, J. J. et al. Modulation of regulatory T cell function by monocyte-derived dendritic cells matured through electroporation with mRNA encoding CD40 ligand, constitutively active TLR4, and CD70. J. Immunol. 191, 1976–1983 (2013). 136. Wilgenhof, S. et al. Therapeutic vaccination with an autologous mRNA electroporated dendritic cell vaccine in patients with advanced melanoma. J. Immunother. 34, 448–456 (2011). 137. Wilgenhof, S. et al. A phase IB study on intravenous synthetic mRNA electroporated dendritic cell immunotherapy in pretreated advanced melanoma patients. Ann. Oncol. 24, 2686–2693 (2013). 138. Mitchell, D. A. et al. Tetanus toxoid and CCL3 improve dendritic cell vaccines in mice and glioblastoma patients. Nature 519, 366–369 (2015). 139. Batich, K. A. et al. Long-term survival in glioblastoma with cytomegalovirus pp65-targeted vaccination. Clin. Cancer Res. 23, 1898–1909 (2017). 140. Wilgenhof, S. et al. Phase II study of autologous monocyte-derived mRNA electroporated dendritic cells (TriMixDC-MEL) plus ipilimumab in patients with pretreated advanced melanoma. J. Clin. Oncol. 34, 1330–1338 (2016). 141. Zhou, W. Z. et al. RNA melanoma vaccine: induction of antitumor immunity by human glycoprotein 100 mRNA immunization. Hum. Gene Ther. 10, 2719–2724 (1999). 142. Kreiter, S. et al. FLT3 ligand as a molecular adjuvant for naked RNA vaccines. Methods Mol. Biol. 1428, 163–175 (2016). 143. Kreiter, S. et al. FLT3 ligand enhances the cancer therapeutic potency of naked RNA vaccines. Cancer Res. 71, 6132–6142 (2011). 144. Bol, K. F. et al. Intranodal vaccination with mRNAoptimized dendritic cells in metastatic melanoma patients. Oncoimmunology 4, e1019197 (2015). 145. Phua, K. K., Staats, H. F., Leong, K. W. & Nair, S. K. Intranasal mRNA nanoparticle vaccination induces prophylactic and therapeutic anti-tumor immunity. Sci. Rep. 4, 5128 (2014). 146. Scheel, B. et al. Therapeutic anti-tumor immunity triggered by injections of immunostimulating singlestranded RNA. Eur. J. Immunol. 36, 2807–2816 (2006). 147. Van der Jeught, K. et al. Intratumoral administration of mRNA encoding a fusokine consisting of IFN-β and the ectodomain of the TGF-β receptor II potentiates antitumor immunity. Oncotarget 5, 10100–10113 (2014). 148. Van Lint, S. et al. Intratumoral delivery of TriMix mRNA results in T-cell activation by cross-presenting dendritic cells. Cancer Immunol. Res. 4, 146–156 (2016). 149. Clausen, B. E. & Stoitzner, P. Functional specialization of skin dendritic cell subsets in regulating T Cell responses. Front. Immunol. 6, 534 (2015). 150. Weide, B. et al. Direct injection of protamine-protected mRNA: results of a phase 1/2 vaccination trial in metastatic melanoma patients. J. Immunother. 32, 498–507 (2009). 151. Kubler, H. et al. Self-adjuvanted mRNA vaccination in advanced prostate cancer patients: a first-in-man phase I/IIa study. J. Immunother. Cancer 3, 26 (2015). 152. Hess, P. R., Boczkowski, D., Nair, S. K., Snyder, D. & Gilboa, E. Vaccination with mRNAs encoding tumorassociated antigens and granulocyte-macrophage colony-stimulating factor efficiently primes CTL responses, but is insufficient to overcome tolerance to a model tumor/self antigen. Cancer Immunol. Immunother. 55, 672–683 (2006). 153. Oberli, M. A. et al. Lipid nanoparticle assisted mRNA delivery for potent cancer immunotherapy. Nano Lett. 17, 1326–1335 (2017). 154. Fotin-Mleczek, M. et al. Highly potent mRNA based cancer vaccines represent an attractive platform for combination therapies supporting an improved therapeutic effect. J. Gene Med. 14, 428–439 (2012). 155. Fotin-Mleczek, M. et al. mRNA-based vaccines synergize with radiation therapy to eradicate established tumors. Radiat. Oncol. 9, 180 (2014). 156. Pascolo, S. Messenger RNA-based vaccines. Expert Opin. Biol. Ther. 4, 1285–1294 (2004). 157. Geall, A. J., Mandl, C. W. & Ulmer, J. B. RNA: the new revolution in nucleic acid vaccines. Semin. Immunol. 25, 152–159 (2013). 158. Weissman, D., Pardi, N., Muramatsu, H. & Kariko, K. HPLC purification of in vitro transcribed long RNA. Methods Mol. Biol. 969, 43–54 (2013). 159. Muralidhara, B. K. et al. Critical considerations for developing nucleic acid macromolecule based drug products. Drug Discov. Today 21, 430–444 (2016). 160. Jones, K. L., Drane, D. & Gowans, E. J. Long-term storage of DNA-free RNA for use in vaccine studies. Biotechniques 43, 675–681 (2007). 161. Probst, J. et al. Characterization of the ribonuclease activity on the skin surface. Genet. Vaccines Ther. 4, 4 (2006). 162. U.S. Food & Drug Administration. Guidance for Industry: Considerations for plasmid DNA vaccines for infectious disease indications. U.S. Food & Drug Administration https://www.fda.gov/downloads/ BiologicsBloodVaccines/ GuidanceComplianceRegulatoryInformation/ Guidances/Vaccines/ucm091968.pdf (2007). 163. U.S. Food & Drug Administration. Guidance for Industry: Guidance for human somatic cell therapy and gene therapy. U.S. Food & Drug Administration https://www.fda.gov/downloads/ BiologicsBloodVaccines/ GuidanceComplianceRegulatoryInformation/ Guidances/CellularandGeneTherapy/ucm081670.pdf (1998). 164. European Medicines Agency. Commission Directive 2009/120/EC. European Commission https://ec. europa.eu/health//sites/health/files/files/eudralex/ vol-1/dir_2009_120/dir_2009_120_en.pdf (2009). 165. Hinz, T. et al. The European regulatory environment of RNA-based vaccines. Methods Mol. Biol. 1499, 203–222 (2017). 166. Pepini, T. et al. Induction of an IFN-mediated antiviral response by a self-amplifying RNA vaccine: implications for vaccine design. J. Immunol. 198, 4012–4024 (2017). 167. Theofilopoulos, A. N., Baccala, R., Beutler, B. & Kono, D. H. Type I interferons (α/β) in immunity and autoimmunity. Annu. Rev. Immunol. 23, 307–336 (2005). 168. Nestle, F. O. et al. Plasmacytoid predendritic cells initiate psoriasis through interferon-α production. J. Exp. Med. 202, 135–143 (2005). 169. Fischer, S. et al. Extracellular RNA mediates endothelial-cell permeability via vascular endothelial growth factor. Blood 110, 2457–2465 (2007). 170. Kannemeier, C. et al. Extracellular RNA constitutes a natural procoagulant cofactor in blood coagulation. Proc. Natl Acad. Sci. USA 104, 6388–6393 (2007). 171. Liu, M. A. & Ulmer, J. B. Human clinical trials of plasmid DNA vaccines. Adv. Genet. 55, 25–40 (2005). 172. DeFrancesco, L. The ‘anti-hype’ vaccine. Nat. Biotechnol. 35, 193–197 (2017). 173. Servick, K. On message. Science 355, 446–450 (2017). 174. CureVac AG. From science to patients — ideas become treatments at CureVac. CureVac http://www.curevac. com/research-development (2017). 175. Aldevron. Aldevron expands North Dakota biomanufacturing facility. Aldevron http://www. aldevron.com/about-us/news/aldevron-expands-northdakota-biomanufacturing-facility (2016). 176. Kreiter, S. et al. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature 520, 692–696 (2015). 177. Ott, P. A. et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547, 217–221 (2017). 178. Jacobson, E. B., Caporale, L. H. & Thorbecke, G. J. Effect of thymus cell injections on germinal center formation in lymphoid tissues of nude (thymusless) mice. Cell. Immunol. 13, 416–430 (1974). 179. Forster, R., Emrich, T., Kremmer, E. & Lipp, M. Expression of the G-protein-coupled receptor BLR1 defines mature, recirculating B cells and a subset of T-helper memory cells. Blood 84, 830–840 (1994). 180. Forster, R. et al. A putative chemokine receptor, BLR1, directs B cell migration to defined lymphoid organs and specific anatomic compartments of the spleen. Cell 87, 1037–1047 (1996). 181. Breitfeld, D. et al. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J. Exp. Med. 192, 1545–1552 (2000). 182. Schaerli, P. et al. CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J. Exp. Med. 192, 1553–1562 (2000). 183. Johnston, R. J. et al. Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science 325, 1006–1010 (2009). 184. Nurieva, R. I. et al. Bcl6 mediates the development of T follicular helper cells. Science 325, 1001–1005 (2009). 185. Yu, D. et al. The transcriptional repressor Bcl-6 directs T follicular helper cell lineage commitment. Immunity 31, 457–468 (2009). 186. Crotty, S. A brief history of T cell help to B cells. Nat. Rev. Immunol. 15, 185–189 (2015). 187. Klein, F. et al. Antibodies in HIV-1 vaccine development and therapy. Science 341, 1199–1204 (2013).188. Gils, A., Bertolotto, A., Mulleman, D., BejanAngoulvant, T. & Declerck, P. J. Biopharmaceuticals: reference products and biosimilars to treat inflammatory diseases. Ther. Drug Monit. 39, 308–315 (2017). 189. Sparrow, E., Friede, M., Sheikh, M. & Torvaldsen, S. Therapeutic antibodies for infectious diseases. Bull. World Health Organ. 95, 235–237 (2017). 190. Henricks, L. M., Schellens, J. H., Huitema, A. D. & Beijnen, J. H. The use of combinations of monoclonal antibodies in clinical oncology. Cancer Treat. Rev. 41, 859–867 (2015). 191. Lewiecki, E. M. Treatment of osteoporosis with denosumab. Maturitas 66, 182–186 (2010). 192. Paton, D. M. PCSK9 inhibitors: monoclonal antibodies for the treatment of hypercholesterolemia. Drugs Today 52, 183–192 (2016). 193. Hollevoet, K. & Declerck, P. J. State of play and clinical prospects of antibody gene transfer. J. Transl Med. 15, 131 (2017). 194. Fuchs, S. P. & Desrosiers, R. C. Promise and problems associated with the use of recombinant AAV for the delivery of anti-HIV antibodies. Mol. Ther. Methods Clin. Dev. 3, 16068 (2016). 195. Boczkowski, D., Lee, J., Pruitt, S. & Nair, S. Dendritic cells engineered to secrete anti-GITR antibodies are effective adjuvants to dendritic cell-based immunotherapy. Cancer Gene Ther. 16, 900–911 (2009). 196. Pruitt, S. K. et al. Enhancement of anti-tumor immunity through local modulation of CTLA-4 and GITR by dendritic cells. Eur. J. Immunol. 41, 3553–3563 (2011). 197. Pardi, N. et al. Administration of nucleoside-modified mRNA encoding broadly neutralizing antibody protects humanized mice from HIV-1 challenge. Nat. Commun. 8, 14630 (2017). This is the first study to demonstrate that directly injected, non-replicating mRNA encoding a monoclonal antibody protects animals against an infectious pathogen. 198. Stadler, C. R. et al. Elimination of large tumors in mice by mRNA-encoded bispecific antibodies. Nat. Med. 23, 815–817 (2017). 199. Thran, M. et al. mRNA mediates passive vaccination against infectious agents, toxins, and tumors. EMBO Mol. Med. 9, 1434–1447 (2017). 200. Sebastian, M. et al. Phase Ib study evaluating a selfadjuvanted mRNA cancer vaccine (RNActive®) combined with local radiation as consolidation and maintenance treatment for patients with stage IV nonsmall cell lung cancer. BMC Cancer 14, 748 (2014). 201. Wang, Y. et al. Systemic delivery of modified mRNA encoding herpes simplex virus 1 thymidine kinase for targeted cancer gene therapy. Mol. Ther. 21, 358–367 (2013). 202. Perche, F. et al. Enhancement of dendritic cells transfection in vivo and of vaccination against B16F10 melanoma with mannosylated histidylated lipopolyplexes loaded with tumor antigen messenger RNA. Nanomedicine 7, 445–453 (2011). 203. Mockey, M. et al. mRNA-based cancer vaccine: prevention of B16 melanoma progression and metastasis by systemic injection of MART1 mRNA histidylated lipopolyplexes. Cancer Gene Ther. 14, 802–814 (2007). 204. Uchida, S. et al. Systemic delivery of messenger RNA for the treatment of pancreatic cancer using polyplex nanomicelles with a cholesterol moiety. Biomaterials 82, 221–228 (2016). 205. Lazzaro, S. et al. CD8 T-cell priming upon mRNA vaccination is restricted to bone-marrow-derived antigenpresenting cells and may involve antigen transfer from myocytes. Immunology 146, 312–326 (2015). 206. Van Driessche, A. et al. Clinical-grade manufacturing of autologous mature mRNA-electroporated dendritic cells and safety testing in acute myeloid leukemia patients in a phase I dose-escalation clinical trial. Cytotherapy 11, 653–668 (2009). 207. Van Tendeloo, V. F. et al. Induction of complete and molecular remissions in acute myeloid leukemia by Wilms’ tumor 1 antigen-targeted dendritic cell vaccination. Proc. Natl Acad. Sci. USA 107, 13824–13829 (2010). 208. Berneman, Z. N. et al. Dendritic cell vaccination in malignant pleural mesothelioma: a phase I/II study [abstract]. J. Clin. Oncol. 32 (Suppl.), 7583 (2014). 209. Amin, A. et al. Survival with AGS-003, an autologous dendritic cell-based immunotherapy, in combination with sunitinib in unfavorable risk patients with advanced renal cell carcinoma (RCC): phase 2 study results. J. Immunother. Cancer 3, 14 (2015). 210. Khoury, H. J. et al. Immune responses and long-term disease recurrence status after telomerase-based dendritic cell immunotherapy in patients with acute myeloid leukemia. Cancer 123, 3061–3072 (2017). 211. Sebastian, M. et al. Messenger RNA vaccination in NSCLC: findings from a phase I/IIa clinical trial [abstract]. J. Clin. Oncol. 29 (Suppl.), 2584 (2011). 212. Rausch, S., Schwentner, C., Stenzl, A. & Bedke, J. mRNA vaccine CV9103 and CV9104 for the treatment of prostate cancer. Hum. Vaccin Immunother. 10, 3146–3152 (2014). 213. Mitchell, D. A. et al. Monoclonal antibody blockade of IL-2 receptor α during lymphopenia selectively depletes regulatory T cells in mice and humans. Blood 118, 3003–3012 (2011). 214. Borch, T. H. et al. mRNA-transfected dendritic cell vaccine in combination with metronomic cyclophosphamide as treatment for patients with advanced malignant melanoma. Oncoimmunology 5, e1207842 (2016). 215. Kongsted, P. et al. Dendritic cell vaccination in combination with docetaxel for patients with metastatic castration-resistant prostate cancer: a randomized phase II study. Cytotherapy 19, 500–513 (2017). 216. Kyte, J. A. et al. Immune response and long-term clinical outcome in advanced melanoma patients vaccinated with tumor-mRNA-transfected dendritic cells. Oncoimmunology 5, e1232237 (2016). 217. Vik-Mo, E. O. et al. Therapeutic vaccination against autologous cancer stem cells with mRNA-transfected dendritic cells in patients with glioblastoma. Cancer Immunol. Immunother. 62, 1499–1509 (2013). 218. Lesterhuis, W. J. et al. Immunogenicity of dendritic cells pulsed with CEA peptide or transfected with CEA mRNA for vaccination of colorectal cancer patients. Anticancer Res. 30, 5091–5097 (2010). 219. Aarntzen, E. H. et al. Vaccination with mRNAelectroporated dendritic cells induces robust tumor antigen-specific CD4+ and CD8+ T cells responses in stage III and IV melanoma patients. Clin. Cancer Res. 18, 5460–5470 (2012). 220. Bol, K. F. et al. Long overall survival after dendritic cell vaccination in metastatic uveal melanoma patients. Am. J. Ophthalmol. 158, 939–947 (2014). 221. Bol, K. F. et al. Prophylactic vaccines are potent activators of monocyte-derived dendritic cells and drive effective anti-tumor responses in melanoma patients at the cost of toxicity. Cancer Immunol. Immunother. 65, 327–339 (2016). 222. Weide, B. et al. Results of the first phase I/II clinical vaccination trial with direct injection of mRNA. J. Immunother. 31, 180–188 (2008).
我们不需要英雄
但我们需要榜样
微信扫码关注该文公众号作者