Redian新闻
>
小学二年级数学题,李永乐居然做不出来

小学二年级数学题,李永乐居然做不出来

教育
最近,有小朋友问了我一个小学二年级的数学题,让我百思不得其解。大家看看,你能不能做出来:

9辆赛车的速度各不相同,它们要比快慢,但没有计时工具,只能在赛道上比谁先谁后,而且每次最多只能有3辆车比赛。那么,最少比几次,能保证选出最快的2辆赛车?

我做了好半天也没想出答案,于是我就咨询了我的学生507(此人毕业于北京大学数学系,以前也多次帮我解答数学问题,甚是厉害),她只花了3秒钟就告诉了我答案:5次。


5次是可行的


507的方法是这样的:
首先每三辆车一组,分成三组比小组赛。每个小组都能排出顺序。

然后,让三个小组的第一名进行一场决赛,就能选出真正的第一名。

这时,决赛中的第二名和总冠军在小组赛时的第二名,都是只输给了总冠军,它们俩谁快呢?还要比一下。谁赢了谁就是真正的第二名。所以,我们还需要一场附加赛。

算起来,3场小组赛,1场总决赛,1场附加赛。一共就是5场比赛啦!


4次为什么不行


当时,我在朋友圈里发了这个问题,许多同学都很快给出了5次的答案。不过,有两名国际金牌,一直在讨论为什么5次就是最少的,为什么4次就不行?

后来,507又告诉了一种方法,的确可以证明4次是不行的。她采用的是图论+反证法的方法。
首先,我们把问题理解为:需要从9辆车中,区分出冠军和亚军,我们认为这样理解题意是合理的,而且处理起来比较方便。如果你不区分冠军和亚军,问题可能会稍微复杂一些。
然后,把每一辆车看作一个点,用每一场比赛的结果进行连线,这样就构成了一个图。具体来说:比赛的过程就是给三辆车排序,如果我们把相邻成绩的两辆车用有向线段连接起来,一场比赛就会出现两条线。比如,在一次比赛中,汽车1最快,汽车2其次,汽车3最慢,那么它们之间的图应该是这样的:

如果举行4场比赛,最多能够画出8条线。为了找到冠军和亚军,这8条线必须把9个点连起来,形成一个单一的、树状的、没有闭环的图,比如下面这个样子:

可以判断出冠军和亚军

大家可以想想:如果图不是单一的,而是分成两支,那么就没办法判断谁才是真正的第一。

有两辆赛车可能是冠军,亚军也无法判断

如果图不是树状,而是中间存在闭环,那么就浪费了一条线,8条线绝不可能把9个点连接起来。

形成一个闭环,至少需要9根线才能把9个点连接起来

下面我们要论证:用8根线,不可能保证把9个点连成我们要求的图。
  • 首先:为了找到冠军,冠车和亚军车一定同场竞技过。因为,它们比其它车都快,如果它们没有比赛过,都会保持不败战绩,就无法区分出谁是冠军了。它们比赛时,冠军一定第一,亚军一定第二,所以冠军和亚军之间有连线。

  • 然后,为了找到亚军,亚军和季军一定同场竞技过。因为,除了冠军以外,这两辆车比其它车都要快。如果它们没有比赛过,就无法区分出谁是亚军。同样的道理,亚军和季军之间有连线。

冠军、亚军、季军之间一定有连线

  • 根据刚才所说,图中不能形成闭环,既然冠军和亚军之间、亚军和季军之间一定有连线,那么冠军和季军之间是不可以有连线的。可是你要注意:在我们进行第一场比赛时,随机选择了三辆车,如果选择的三辆车分别是冠军、季军和第四名,那么比赛后,根据我们的构造规则,冠军和季军分列小组第一和第二,它们之间会做出一条连线。这样,所有比赛结束后,冠军、亚军、季军就会出现一个闭环。

  • 大家注意:冠军和季军之间的这条线不是一定存在,闭环也不一定存在。但是由于最初我们缺乏信息,随机选择车辆比赛,我们不能保证冠军、季军和第四名不会碰在一起,我们也无法保证避免闭环的出现。而一旦出现闭环,就不可能用8条线把9个点连成一个单一的树状图,也就不能判断出冠军和亚军了。

整个的逻辑过程是这样的:

综上所述,8条线不能保证把9个点连成满足条件的图,所以4场比赛也不能保证从9辆车中找到冠军和亚军,5次比赛是最少情况。
你看,一个小学二年级问题,居然连图论和反证法都用上了。


还能再给力一点吗?


我们能让这个问题变得更加普遍一些吗?

比如:如果有n²辆车,每次比赛只有n辆车参赛,在没有计时工具的情况下,至少比赛多少次,才能保证找到第一名和第二名?

这个问题很简单,方法也是类似的,你可以思考一下再往下看。
首先进行小组赛:每场比赛n辆车,共有n场比赛。按照刚才的构造方法,我们能把每一小组的赛车排序,并且进行连线。

n场小组赛后,每一小组的顺序都排好了

然后,我们再让每场小组赛的第一名进行一场总决赛,找到冠军。

1场决赛后,冠军找到了

最后,冠军小组赛时的第二名和总决赛的第二名,再进行一场附加赛,找到亚军就好了。比如下面这种情况:

1场附加赛后,找到亚军

最终,我们通过n场小组赛、1场总决赛、1场附加赛,找到了冠军和亚军,一共需要n+2场比赛。

你能证明n+2是最少的情况吗?

方法和刚才一样:
  • 果只需要n+1场比赛,每一场比赛只能对n辆车排序,能连n-1条线,所以所有比赛一共能够连(n+1)(n-1)=n²-1条线。
  • 用n²-1条线,连接n²个点,找到冠亚军,必须画出一个单一、树状、无闭环的图。

  • 可是,根据9辆车时同样的道理,冠军、亚军、季军之间有可能出现闭环。

  • 所以,用n+1场比赛,无法保证找到冠亚军。n+2是问题的解。

这个小学二年级数学题,可能很多同学都能想到答案。只是要证明它,的确不是一件容易的事。而且,到目前为止,我们还没有找到这个问题的一般答案,如果你愿意的话,可以由浅入深的思考以下问题。事先声明,除了第一个问题我找到了答案,后面两个还没有思考出来。

问题1:如果有n辆车,每次比赛最多有n辆车,那么最少比赛多少次,才能保证找到冠军和亚军?

问题2:如果有n辆车,每次比赛最多m辆车(m<n),那么至少比赛多少次,才能保证找到冠军和亚军?

问题3:如果有n辆车,每次比赛最多m辆车(m<n),要确定前k辆车的排名(k<n),至少要比赛多少场?

如果你都想出来了,你至少达到了小学三年级水平。

END

往期推荐



微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
手机就能弄个3A级数字人!中国团队一套“乾坤大挪移”搞定谁在「搅动」万亿级数字空间市场?小学中高年级语文,这三件事越早做越好外来务工女性在城市的十二年:困境、发声与互助又一个偶像跌落神坛,我却嘲不出来​孩子对数学没兴趣?这几部高分数学纪录片孩子抢着看!对数学没有兴趣的他终获得数学最高奖?亚裔,辍学,半路出家,buff拉满的数学传奇!又一位女性获菲尔茨数学奖,到底是什么限制了我女儿的数学能力?《鬼子来了》:真怀念二十二年前那个“知不道”的姜文“明明很悲伤却哭不出来”:一个冷漠的人,如何找回自己的情感?唐朝科举里的数学题,我赌你只能做1道出来!夜归参加五年级小学生毕业设计答辩会是怎样的体验?呃……要多尴尬有多尴尬上海封城,缺菜和罐头为了1页PPT,我居然做340页PPT!体制外路线数学学习指南,「沪圈牛娃」私藏的数学名师的大实话!“分手后,一直走不出来怎么办?”娃到底啥才能有时间观念?原来一二年级的数学书里有答案“这方案,不整瓶茅台写不出来”娃的一道数学题把家长群给炸了,忍不住惊叹“想当个吃瓜群众都好难!”2022年英国小学二年级统考英语三套试卷解析我要曝光儿子的微信群,但凡有个小学文凭,也干不出这么笑死人的事儿风云老师详细讲解2022高考数学浙江卷(我从未有见过如此难度的高考数学题)经不住撩小学数学最重要的是什么?到高年级再补救,就太难了……京城联夺冠后为什么没有参加第二年的城超联赛?—足球追梦人孔兵(三十一)猿视角: 二年级男生恶意踹女童后脑, 这他妈不是故意杀人是什么?论文艺,怎能少了大明永乐皇帝慫是怎麽增起來的JACQUEMUS伦敦快闪店,居然做成了「大澡堂」这个领域,中俄连续第二年创纪录用友BIP升级数智底座,iuap能否代表中国PaaS平台的最高实力?| 甲子光年本来极有可能提前十二年打职业联赛—足球追梦人孔兵(十)蔡襄晚年的代表作《纡问山堂帖》这个二年级男孩怒怼妈妈的视频,有多少父母看完笑完沉默了
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。