Redian新闻
>
Nature Genetics|胡家志课题组揭示黏连蛋白Cohesin功能缺失导致致癌基因突变的分子机制

Nature Genetics|胡家志课题组揭示黏连蛋白Cohesin功能缺失导致致癌基因突变的分子机制

公众号新闻


黏连蛋白Cohesin介导细胞分裂过程中姐妹染色体的黏连,还参与染色质三维结构的形成和维持1,对哺乳动物细胞基因组DNA的稳定性有着非常重要的影响。黏连蛋白的失活突变在多种癌症中高频出现,但前期的研究表明黏连蛋白功能缺失导致的姐妹染色体黏连错乱引起的染色体非整倍性可能不是致癌的主要原因2,这表明黏连蛋白功能缺失导致基因组不稳定乃至肿瘤发生的分子机制仍待进一步挖掘。


2023年7月27日,北京大学生命科学学院和北大-清华生命科学联合中心胡家志课题组在Nature Genetics发文揭示了黏连蛋白Cohesin功能缺失导致致癌基因突变的分子机制。他们发现黏连蛋白缺失会导致休眠复制源在S期早期的大量激活,从而干扰正常的DNA复制时序,进而导致基因组不稳定性的剧增,从而引起部分致癌或者抑癌基因的突变。该研究是本课题组转录调节DNA复制起始的工作的延续,也拓展了我们对基因组三维结构调节DNA复制而维持基因组稳定性的分子机制的理解,还纠正了领域内早前部分研究认为黏连蛋白失活不影响DNA复制时序的错误认识。


为探究黏连蛋白失活的影响,作者在人K562免疫细胞和小鼠胚胎干细胞中构建了生长素介导的Degron系统,用以快速降解黏连蛋白Cohesin的核心组分之一——RAD21(图1a)。与之前报道一致,该系统只能部分降解RAD21(~70%)。为排除RAD21未降解细胞对实验结果的干扰,作者仅分选RAD21彻底降解的细胞用于后续分析(图1b),而之前的两项相关研究均未排除这部分细胞的影响,因此对实验结果造成了干扰。作者首先采用实验室前期开发的检测DNA双链断裂的高通量测序方法——PEM-seq3进行定量分析(胡家志课题组开发出优化基因编辑和追踪DNA修复的新方法),发现RAD21缺失将导致全基因组的DNA断裂水平提高至原来的3-5倍(图1c)。这说明黏连蛋白在维持基因组稳定性方面发挥着极为重要的作用。

图1 RAD21降解造成大量基因组双链断裂发生。(a)染色质loop及 Cohesin复合体示意图。(b)K562细胞中RAD21 AID蛋白降解体系构建与验证。1#和4#为构建成功的RAD21-mAID-mClover细胞系,简称RAD21-mAC。(c)PEM-seq方法从MYC和TP53位点分别检测RAD21降解后染色体易位频率。(d)RAD21降解导致的DSB热点基因。(e)TCGA数据库子宫内膜癌样本中热点基因与Cohesin蛋白亚基共突变情况。


进一步分析发现RAD21缺失导致的DNA断裂富集于147个热点基因,其中超过三分之一与癌症和其它疾病高度相关(图1d)。此外,这些热点损伤基因与黏连蛋白的失活存在显著共突变的关系(图1e),这表明黏连蛋白的失活突变可能是相关癌症或疾病发生发展的核心原因之一。通过分析这些DNA损伤的分布位置发现,染色质三维结构的改变和转录水平的轻微扰动不是黏连蛋白降解导致DNA损伤的主要原因。但作者发现RAD21降解导致的DNA损伤非对称性地分布于DNA双链,且该非对称分布与DNA复制过程中后随链的关键产物——冈崎片段的分布方向一致(图2a)。此外,黏连蛋白的降解还导致DNA复制速率下降且停顿复制叉增多(图2b, c),这些数据均表明黏连蛋白与DNA复制的稳定有着重要的关系,其缺失可能通过影响DNA复制而导致基因组不稳定性。目前已知DNA复制是细胞基因组不稳定性最大的来源。作者通过绘制细胞的DNA复制时序,发现黏连蛋白的降解导致了约30%基因组区域的DNA复制时序提前(图2d, e),且DNA损伤的热点基因大多位于DNA复制时序异常的区域(图2f)。

图2 RAD21降解导致复制时序紊乱和复制压力。(a)PEM-seq检测RAD21降解后细胞中染色体易位断裂位点偏向性与OK-seq相似。(b)RAD21降解导致复制叉速率减慢。(c)RAD21降解导致复制叉停顿增加。(d)RAD21降解导致部分基因组区域复制时序提前。(e)K562细胞基因组中31.6%的区域在RAD21降解后发生复制时序的显著提前。(f)热点基因的复制时序变化情况,每个方格表示一个基因,红色和蓝色分别表示复制时序的提早和延迟。


为探究复制时序改变的原因,作者采用了该实验室前期开发的用于鉴定DNA复制起始的测序方法——NAIL-seq4(Genome Biology | 胡家志实验室揭示转录调节DNA复制起始的分子机制),发现RAD21的降解导致约25%更多的DNA复制源在S期早期被激活(图3a, b)。这些早期复制起始位点具有经典复制源的特征,为休眠复制源(dormant origins)。这些在早期被异常激活的复制源导致了DNA复制时序的提前(图3c)。休眠复制源在正常情况下只在DNA复制中晚期偶尔起始,只有在面临DNA复制压力时才会大量激活。而休眠复制源在S期早期的提前激活需要消耗更多的复制相关因子,从而引起复制压力,这可能是RAD21缺失导致基因组不稳定性的重要原因之一。定点敲除c-MYC基因附近的染色质环的锚点,将导致染色质环内部作用的减弱,从而引起DNA复制起始在染色质环内部的激活,并进而引起DNA损伤水平的增加(图3d)。这些数据揭示了Cohesin缺失→DNA复制起始位点增加→DNA复制时序紊乱→DNA损伤水平上升的逻辑关系,为深入理解黏连蛋白Cohesin在DNA复制过程中的功能提供了更多的解释。

图3 RAD21降解导致复制起始位点增加并引起DNA双链断裂。(a)RAD21降解后(4#)NAIL-seq检测到的早期复制起始信号(EdU/HU)和所鉴定的早期复制起始位点(Early replication initiation zones, ERIZs)。(b)饼图统计1#和4#RAD21-mAC细胞中RAD21降解后ERIZ信号强度分类和比例。(c)K562中四类ERIZ区域在RAD21未降解和降解的细胞中所处的复制时序密度图。(d)c-MYC区域染色质环锚定位点的敲除(绿色方块)造成橙色阴影区域染色质相互作用(q3C-seq)减弱,早期复制起始信号(NAIL-seq)增强和DSB(END-seq)的增加。


原文链接:https://rdcu.be/dhUmX



会议推荐

会议详情














会议名称:2023(第14届)细胞与基因治疗国际研讨会

暨抗体工程与创新免疫治疗技术论坛

暨2023细胞免疫治疗专业委员会年会

主办单位生物谷、梅斯医学、同济大学附属同济医院、南京可缘

大会时间:9月22-23日

会地上海 

大会规模:1500人

2010年至今,生物谷联合各合作单位已经顺利召开了13届细胞与基因治疗国际研讨会与全球致力于细胞治疗行业同仁们一同成长沉淀,在提供行业信息交流平台的同时,也为基础研究提供了技术/产品等产业化的孵化平台。


基于此,本届会议继续以转化医学为切入点,以基础研究与临床应用相结合,针对细胞治疗的临床前沿研究、临床监管、治疗规范、细胞治疗安全性,免疫细胞新型疗法、实体瘤治疗、干细胞与癌症、抗体药物、核酸药物、基因编辑、肿瘤免疫治疗等热门议题进行讨论,邀国内外产学研医专家共聚,共绘产业发展新蓝图!

长按识别二维码


立即报名参会





微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
CELL MOL IMMUNOL | 孟广勋课题组揭示单核细胞替代性NLRP3炎症小体激活的负调控机制Science|袁钧瑛、许代超课题组解析能量代谢稳态缺失后诱导的细胞死亡分子机制Cell | 揭示感觉神经元影响肠道功能的分子机制nature子刊|清华大学闫创业课题组揭示GABA转运蛋白GAT1的底物转运机制和药物抑制机理Nature Communications | 柯莎课题组/黄永棋课题组合作揭示小分子调控tau蛋白相分离和聚集的机制Microbiome|丁涛课题组揭示呼吸道病毒感染塑造口咽菌群的机制招募c-Met异常肺癌患者@广东省人民医院及全国21家参研医院I针对MET基因突变的靶向药Nature | 科学家揭示促进癌细胞对铁死亡易感背后的特定分子机制Nature子刊 | 闫创业课题组揭示GABA转运蛋白GAT1的底物转运机制和药物抑制机理Science | 何跃辉团队揭示核定位的α-酮戊二酸脱氢酶复合体调控组蛋白去甲基化的分子机制Phenomics | 中国科学院宿兵课题组揭示高原人群血氧饱和度的未知表型模式NAR | 郑晓峰课题组揭示乙酰转移酶ESCO2通过稳定Cohesin复合物促进NHEJ修复的作用和机制Nat Cell Biol | 袁钧瑛、许代超课题组解析低氧诱导RIPK1介导的细胞程序性死亡的分子机制台湾印象Nature|新研究揭示刺激毛发生长的新分子机制Nature | 对1万多份人类癌症样本分析揭示了染色体失衡驱动癌症发生背后的分子机制eLife | 揭示糖尿病药物二甲双胍延长健康寿命背后的分子机制Genome Biology丨孙育杰课题组超分辨成像解析Cohesin复合体在三维基因组构建中的分子机制Nature | 杨海涛/何大一团队揭示新冠病毒耐药的分子机制Nat Commun | 秦成峰/王红梅团队揭示寨卡病毒感染影响胎盘发育的分子机制“新冠超级免疫者”真的存在!Nature新研究揭示部分人感染新冠但从未出现症状的根本原因是基因突变!nature | 杨海涛/饶子和/何大一团队合作揭示新冠病毒对Paxlovid耐药的分子机制追夢豪寺(Dream House) (六)追夢豪寺Cancer Research | 郑晓峰揭示SUMO化修饰通过调控液-液相分离来影响NHEJ修复效率和肿瘤细胞耐药的分子机制STEM CELL RES THER | 姬广聚课题组揭示人源胚胎干细胞外泌体在肺纤维化治疗中的作用和机制TARZAN IN MANHATTAN/Kim Crosby趁着老枪午夜酣眠,让小月再给四嫂暗暗点个赞。。。Molecular & Cellular Proteomics | 上海交大肖华课题组揭示核酸结合蛋白在衰老进程中的重要作用迪拜公共交通Cell | 中国科大朱书课题组揭示蛋白Gasdermin D在小肠对食物的免疫耐受中的作用Cell Discovery | 高宁课题组揭示DNA糖基化酶在核小体上的碱基切除机制Nature子刊 | 梁广/王怡课题组揭示去泛素化酶JOSD2保护心肌肥厚及心力衰竭新机制Cell | 吝易、杨雪瑞团队揭示相分离调控节律性蛋白翻译的分子机制Cell Research | 高宁课题组揭示人源核糖体大亚基细胞核质内的成熟过程Nature | 杨海涛/饶子和/何大一合作揭示新冠病毒耐药的分子机制
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。