宇航员在太空生病了,要如何治疗?
空间站和飞船中的特殊环境让宇航员更易患病,而火灾、失压和空气污染等事故也会威胁到宇航员的生命安全。研究人员需要找到方法,让宇航员在远离地面医疗机构的情况下处理好这些突发状况,这对未来的深空探测和太空旅行来说至关重要。
在这篇节选自《环球科学》7月新刊的文章中,赛阿姆斯·蒂埃里、马蒂厄·科莫罗夫斯基、阿德里安诺斯·格莱米斯和劳拉·安德烈-布瓦耶将带我们看一看如何在深空探索任务中保障宇航员的健康。
1997年2月24日,在俄罗斯“和平”(Mir)号空间站上,一台氧气发生器在维护操作过程中出现问题,一小块高氯酸锂着火了。空间站距离地面超过350千米,且处于失重状态,形势十分紧迫。浓厚的烟雾中混合着燃料颗粒和融化的金属滴,漂浮在空间站中,使宇航员面临严重烧伤和因窒息而失去意识的风险。火焰还可能穿过空间站内壁,使生活舱失压,这将迅速导致宇航员死亡。
机组成员们急忙戴上呼吸防护面罩,以免吸入有毒烟雾,并启动灭火装置,在警报声中仅用几分钟就控制了火势。他们仅受了几处轻伤,奇迹般地避免了最坏的情况发生。这场紧急事故体现了空间站中对宇航员生存造成威胁的三大隐患:火灾、失压和舱内空气污染。如果宇航员在任务期间受了重伤,空间站上的种种限制将让救治变得非常复杂。
就像独自环球航行的水手那样,发生事故时宇航员不一定总是能获得医疗援助,尤其难以紧急撤离。因此,宇航员必须避免风险,而不是等风险发生时再去承受。他们需要预判种种情况,面对各种突发健康状况时尽可能独立处理。国际空间站已经环绕近地轨道运行了二十多年,最近中国空间站也加入其中,这一全新的人类生活方式引发了相关行业对医疗风险管理的思考。无论是轨道飞行还是亚轨道飞行,太空旅行也带来了新的问题,例如参与者需要满足什么样的健康条件。
过于严格的标准会减少潜在旅客的数量,而过于宽松的标准会在飞行过程中带来慢性病恶化的风险,目前我们还未能在两者之间找到一个平衡点。此外,所谓的深空探索(如月球表面探索和火星探索)也提出了新的问题,例如,在这种恶劣环境下人类的防护和适应能力如何,更不必说完全自主地在这样的环境中进行医疗护理的艰难程度了。
充满风险的空间
即使是空间站内的日常活动,有时也会带来危险。就像在潜水艇上一样,宇航员要一连数月生活在一个狭小、嘈杂的空间里,周围是数不清的电线、控制面板和制冷系统,理论上这些设备都可能引发触电、烧伤或刺激性物质暴露。太空任务的另一特殊之处在于,需要出舱对某些设备(如电池、电缆、天线等)进行维护和维修操作。这些舱外活动具有风险,而且对体力要求很高。这类活动通常持续数小时,期间宇航员要保持精神高度集中。这些任务中使用的宇航服是真正的独立迷你空间站,包含了所有维持生命所必需的设备。
在宇航服内部,宇航员处于低压环境(30千帕),这提升了宇航服的灵活性,以便宇航员活动肢体,操作工具。从舱内气压到宇航服内低压环境的转换是受到控制的,在一个减压室内完成,以避免宇航员患上减压病,这种病与人们熟知的潜水员减压病相似。最后,还存在一个重大的风险因素:与太空垃圾或微陨石相撞,这些物体的飞行速度可达到每秒数千米。
另一个环境限制也同样重要,那就是失重。在地球上,我们能够行走、跳跃、跑动、保持平衡,并根据体力活动强度和姿势变化调节心脏输出量,这是因为我们的生理构造已经适应了地球的重力。我们的肌肉、骨骼、内耳、心脏和血管系统都在重力作用下经过了数百万年的演化。而在离地面400千米的高空中,宇航员们处于自由落体状态。机体的每一个生理系统都倾向于找到一种新的稳态,即新的功能平衡点,但这种适应是有限的。
限制的消失反过来成了一种限制:骨骼矿物质逐渐流失,变得越发脆弱;外力的减少会导致骨骼矿物质快速流失,增大了骨折和肾结石的风险;姿势肌(维持姿势的肌肉)萎缩,血管壁增厚;视觉敏锐度有时会下降,原因之一是血液重新分布进入上半身造成的颅内高压;运动感觉协调也改变了。重力的消失造成了一系列症状,与衰老或长期卧床的影响相似,这增加了机体对某些疾病的易感性,并削弱了机体在患病或受伤时的应对能力。甚至基因的调控和表达也会受到影响,就像那项著名的孪生子研究所揭示的那样。
此外,宇航员还携带了大量的抗生素,以应对肺部或尿路系统的细菌感染。在太空中,多种因素的结合放大了感染的风险。因为环境狭小而封闭,细菌很容易发生人际传播。同时,宇航员的免疫抵抗力也被削弱了,这可能是因为任务的压力、睡眠紊乱和心律紊乱、放射性环境和食物营养成分受限。最后,多项研究显示太空站的条件(封闭、人造的低压环境)可能催生对治疗有更强抵抗性的细菌(例如形成细菌生物膜,阻碍抗生素渗透和生效),甚至毒性更强的细菌。
太空的辐射环境也会加速药物活性成分的分解,长此以往可能使药物失效,这在火星探索等长期任务中可能造成问题,因为不可能在执行任务期间得到补给。
如何降低风险
为了在这个远离医疗机构的独特环境中保护宇航员的健康,各国航天局和医疗机构已经采取了一系列措施,从三个方面来降低风险:预防、应对和机上自主医疗。
一种预防措施就是严格选择身心健康的年轻宇航员,以避免他们在任务期间身体状况恶化,出现慢性病(如癫痫、哮喘或心力衰竭)发作的状况。招募完成后,一支医疗团队将在整个飞行任务准备阶段对宇航员进行健康监测。监测内容是标准化的,包含阻抗测试、骨密度控制、眼科和听力检查。这些测试是为了确保宇航员出发前没有身患疾病,并为起飞后的健康监测提供参考数据。在起飞前隔离14天能减少将潜伏的传染性疾病带入空间站的风险。一切可疑症状都会将宇航员排除在任务之外,以确保本人和同事们的健康。一个著名的案例就是肯·马丁利(Ken Mattingly),他在起飞前几天被怀疑患上了风疹,无缘“阿波罗”13号(Apollo 13)任务。
另一个预防措施就是使用环境健康系统(EHS)对国际空间站内的环境进行密切监控。这个系统包括多台监测设备,能检测空间站的水或表面潜在的微生物污染。空间站内的空气质量同样受到监控,系统会在发现甲醛或一氧化碳等有毒气体时发出警报。最后,射线剂量计能监测辐射风险,就像地面上的核电站或放射性医疗机构的工作人员监测电离辐射风险那样。
在预防措施的基础上,还要准备应对措施,目的是减少不可控制的变量(如失重和禁闭环境)对生理或心理的影响。例如,为了避免太空航行引发的肌肉流失,宇航员每天必须运动两个半小时。国际空间站也为此配置了多种设备,有带安全带的跑步机和动感单车,还有先进阻抗训练器(ARED),这是一种适应失重环境的肌肉训练设备。另一些应对措施是营养学方面的,科学家正在研究在太空任务期间通过摄入多酚维持肌肉量的方法。
前两种保护措施(预防和应对)是有效的,占据了近地轨道航天任务中风险管理策略的大部分。不幸的是,在这个危险的环境里,我们无法完全消除受伤或患病的风险。有统计预测显示,在持续6个月的轨道空间站任务中,发生严重疾病或创伤的概率为每人1%到17%。太空探索的历史上也多次出现先例。在1961-1999年间,国际空间站仍未投入使用的时候,有记录的在轨飞行器上发生的严重医疗事件为17起,其中4起事件要求紧急返回地球。面对心率失常、严重尿道感染和无法用止痛药抑制的头痛,机组负责人选择了缩短任务时间,以免在飞行器上冒险进行医疗操作。
第三道防线就是为国际空间站内部配备医疗和外科手术设备,以便机组人员尽可能独立应对各种突发健康状况。这就是国际空间站中健康维持系统的作用,它配备超过190种药品,按照紧急程度分类存放在不同的药箱里,用于应对最有可能发生的疾病。例如,没有恶化风险的轻微感染很容易使用“门诊”药箱处理,这个药箱中的药可以很好地应对常见的小毛病(如太空病、恶心、便秘、轻微烧伤等)。空间站上还配备了超声波仪器,可以检测多种疾病,为诊断带来了很大的帮助。
但是,每一道防线(预防、控制和自主应对)都有局限性。例如,国际空间站上自主医疗的一些技术或策略上的弱点,在火星探测等更长期的任务中可能会造成巨大的困难和医疗困境。
到目前为止,太空医学仍然是一个非常开放的研究领域,随着太空探索向更远的距离发展和对旅客开放,这个领域探讨的问题也在发生变化。为了加深我们对这个领域的理解,国际空间站仍然是一座研究失重科学的重点实验室。
《环球科学》7月新刊销售中
戳图片或阅读原文
立即购买
微信扫码关注该文公众号作者