Redian新闻
>
2022饶毅北大讲课视频|《生物学概念与途径》11(下):整合

2022饶毅北大讲课视频|《生物学概念与途径》11(下):整合

科学


11    还原与整合    (下)



11.9    整合:视网膜


视觉认知是逐步整合的结果。


视网膜神经信息传递的三级细胞(感光细胞、双极细胞、视神经节细胞)有整合,视网膜内还有其他细胞(如水平细胞、无突细胞)也参与调节、整合。


美国生理学家Keffer Hartline1903-1983)于1932年记录到马蹄蟹单根视神经的动作电位,发现视觉刺激强弱影响其发放频率,但不影响其形状(Hartline and Graham1932)。

更多的脊椎动物视神经研究显示,有些视神经对恒定的光照有稳定的反应,有些对给光有反应(on response),有些视神经是撤光的时候反应最强(off response),有些视神经是给光和撤光的时候反应都强(on-off response),有些视神经只对撤光有反应,光线的运动也能影响一些视神经的反应(Hartline19381940a1940b)。Hartline称:“单个神经细胞不会独立行动,视觉系统所有单位行动的整合才能产生视觉”(Hartline1942)。



Stephen Kuffler1903-1980)研究猫的视网膜时发现,RGC的感受野不是简单的对光反应,而有特定模式。有些RGC的感受野是中心为On反应、周边为Off反应(称为“On中心”感受野)。有些相反,中心为Off 应、周围On 反应(称为“Off中心”感受野), 而且用光同时刺激中心和周边区域可以抑制神经元的反应(Kuffler1953)。英国的Horace Barlow1921-,达尔文的曾孙)研究蛙的视网膜得到类似发现(Barlow1953BarlowFitzHugh and Kuffler1957)。这些发现显示视觉传递到RGC时经过了视觉加工处理。


哺乳动物的RGC送出神经纤维投射到外侧膝状体(LGN),双侧各有一个LGN,分六层,235层接受同侧视网膜的RGC投射,146接受对侧视网膜的RGC投射。LGN的神经投射到大脑皮层枕叶的初级视皮层(V1)。


11.10    视皮层研究的基础


对初级视皮层的研究,是神经信息整合为认知的一次突破。加拿大旅美科学家David Hubel1926-2013)和瑞典旅美科学家Torsten Weisel1924-)的合作为核心内容(Hubel and Wiesel19982005)1958年,Wiesel是霍普金斯大学眼科研究所Kuffler的博士后,Hubel来加入生理系Vernon Mountcastle1918-2015)实验室,但因生理系拥挤安排不过来,Kuffler建议HubelWiesel合作九个月等空间。这一合作延续25年,而且前五年就已硕果累累。KufflerBarlow等已经研究视网膜的信号,HubelWiesel研究视皮层。


在技术上,Kuffler的合作者发明了较好的仪器(Talbot and Kuffler1952),可以固定头和眼睛,而且可以局部给光刺激视网膜较小的区域,改进了此前常用的弥散给光。Hubel本人发明了用钨丝电极记录皮层电位(Hubel1957),很快成为皮层电生理研究的常用工具,它的尖足够小(直径0.50.05微米)可以较好记录单细胞放电,而柔韧性足够强,相对不易断。Hubel还发明了微推进器,将微电极插入脑内(Hubel1959)。工欲善其事必先利其器的Hubel综合多种实验方法,设计建立了研究途径:发明电极,用微推进器将之插入视皮层,用TalbotKuffler发明的仪器局部给光刺激视网膜后记录视皮层的信号,然后用电流损毁电极所在部位,电生理实验完成后可以通过解剖观察损毁部位而确定电极插入的部位(Hubel1959)。


在科学上,Vernon Mountcastle在体躯感觉皮层的研究是HubelWiesel研究的基础之一。

Mountcastle发现了皮层功能柱(cortical columns):功能柱垂直于皮层表面,其中不同层的神经细胞都对同样的体躯部位产生感觉反应(Mountcastle19571997)。他当时可以分四种感觉模式:皮肤的毛发位移、皮肤压力、深部压力和关节转动。他发现功能柱内部的神经元都对同一种感觉刺激起反应,而不对其他起反应(Mountcastle1957)。当时已有对皮层纵切的实验,它们对皮层功能影响很小(Lorente De Nó1949Sperry, Minor and Myers1955),Mountcastle推测这些是由于对纵向功能柱影响较小的缘故。


人的大脑皮层约2600平方厘米,从脑膜紧邻的第一层到邻接脑室的第六层,其中功能柱从第2层到第6层,每个功能微柱(minicolumn)一般含80-100个神经元(纹状皮层2.5倍于此),多个微柱组成直径为300600微妙的功能柱(cortical column)(Peters and Sethares1996Mountcastle1997)。听觉皮层、运动皮层也一样有功能柱,听觉皮层的功能柱与声波的频率等相关(Mountcastle1997)。功能柱可能与发育过程中神经细胞前体的起源和迁移有关(Rakic19721995)。


11.11    整合:初级视皮层


HubelWiesel之前,极少研究视皮层。他们起初研究猫的视皮层,后研究猴的视皮层。



在仅有的视皮层研究中,德国佛莱堡大学的Jung等用了弥散的光作为刺激,作用于整个视网膜,记录到百分之五十的V1细胞对光有反应,其反应类似视网膜的RGCsJung19531958Jung and Baumgartner1955)。


1959年,Hubel比较了弥散光和点光,发现V1的细胞基本对弥散光不反应,而对局限光反应很强,On反应和Off反应都有。存在对移动的光有反应的V1细胞,其中多数只对一个方向移动的光有反应,有些对于静止的光无反应(Hubel1959)。这一研究看起来是用新的记录电极和给光方法,重复Jung的研究,但却有新发现。事后分析,Jung等的研究不仅给光方法不佳,而且记录有问题,估计是记录到了LGN投射到视皮层V1的纤维,而不是V1内部的细胞,所以记录到的反应类似视网膜的RGC


HubelWiesel最初预测在视皮层也发现类似RGC的反应,On中心反应、Off中心反应(Hubel and Wiesel1998)。但他们发现了差别:中心不是圆的,而是“拉长了的圆“(Hubel and Wiesel1959)。他们称这种细胞为“简单细胞”。


他们提出这些细胞是对直线有反应。按这样的想法,他们进一步实验确定V1确实有对直线有反应的细胞,对而且直线的朝向有要求,只有特定朝向(orientation)的直线才能引起特定V1细胞的反应,所以是“朝向选择性细胞”。


HubelWiesel还发现,V1的细胞一般主要对一侧眼的刺激有反应,因此有眼优势细胞。对运动有反应的细胞对直线运动方向(direction)有选择性(Hubel and Wiesel1959)。


他们还发现,视皮层也有功能柱,而且同一个功能柱的细胞都对同一个方向的线有反应,既朝向选择性功能柱(orientation selective columns),也有主要对一侧眼有反应的功能柱,眼优势柱(ocular dominance columns(Hubel and Wiesel19621963a)。因此,皮层的功能柱是普遍的规律,而不限于体躯感觉皮层(Mountcastle1957),相邻的朝向功能柱偏好的朝向相近,逐渐变化。


在发现这些事实的基础上,HubelWiesel提出V1之所以有这种识别线的简单细胞是因为他们接受了按一定朝向排列的LGN识别点的细胞的神经投射(Hubel and Wiesel1962)。


这是对认知现象提出大脑皮层神经生理学解释的优美范例。


HubelWiesel对于简单细胞的解释简单而优美,很快认为可能是对的。但不容易检验。因为需要检测投射到同一个V1线识别细胞的LGN神经纤维末梢到底对什么有反应。1990年代中期才有实验似乎支持LGN投射与V1细胞反应的关系(Reid and Alonso1995FersterChung and Wheat1996Hubel1996)。为了分离LGN投射的神经末梢电位与V1局部神经元网络的电位,Ferster等用全细胞膜片钳方法,记录V1细胞的膜电位,并通过降温大幅度减少V1神经元网络的活动,他们发现,V1神经元的膜电位仍然保持朝向选择性。由于冷冻V1V1神经元的膜电位主要来自LGN投射,这就证明V1简单细胞的朝向选择性的确可以由LGN的传入产生,这就支持了HubelWiesel的模型(FersterChung and Wheat1996Hubel1996)。Reid等人同时在LGNV1进行单细胞微电极记录,并使用脉冲相关分析判定LGN细胞与V1简单细胞之间是否存在单突触连接,他们发现,与V1细胞有单突触连接的那些LGN细胞,其感受野的确按V1简单细胞的感受野朝向排列。当然,V1局部网络对V1简单细胞的反应也有贡献。


但还有不同于HubelWiesel的解释:V1细胞有计算功能,或V1不同功能柱之间可以横向相互作用,也可以解释V1简单细胞的反应。而复杂细胞和高复杂细胞,就可能更复杂。在鼠进行双光子成像,通过钙离子浓度反映神经细胞的兴奋性(Jia et al., 2010)。在小鼠视皮层单细胞树突进行光学成像辅以电生理记录发现:同一根树突上,接受不同朝向直线刺激的输入,而无论细胞的输出朝向,其输入都有多种朝向,从而支持V1细胞不是依赖输入的相似性决定其输出,而是单个细胞可以计算其多种输入信号,整合后得到单一输出信号(Jia et al., 2010)。


所以,前级神经纤维投射确定V1简单细胞朝向选择性的机理并非已经证明。认知的神经机理,可能比以前想象的要复杂。


HubelWiesel还发现猫的17区(猴的V1)有对更复杂型式反应的细胞:对运动的线,对运动的边界,对特殊的形状。他们称之为“复杂细胞”(没有OnOff区域,有位置不变性)(Hubel and Wiesel1962)。在猫的18区(猴的V2),他们发现90%的细胞是复杂细胞,在猫的19区(猴的V3),他们发现42%为复杂细胞、58%为“超复杂”细胞(后者反应的图形需要有非连续性,亦称end-stop)(Hubel and Wiesel1965a)。V2V3的一个功能柱可同时含有复杂细胞和超复杂细胞。V2V3的细胞多数为双眼驱动。从V1V3越来越复杂,而且解剖上,他们观察到V1对于V2V3有投射。HubelWiesel提出复杂细胞接受简单细胞的投射从而解析更复杂的视觉刺激(Hubel and Wiesel1965a)。当时很容易认为视觉认知从此都由简单的投射法则而解决。


以上实验是用猫做的。HubelWiesel此后在猴做了同类实验(Hubel and Wiesel1968)。在猴的V1,他们发现有简单、复杂和超复杂细胞,简单细胞多于复杂和超复杂细胞。猴V1也有朝向选择功能柱和眼优势功能柱,而且相互独立。第II和第III层的浅层2/3只有复杂和超复杂细胞,没有简单细胞,双眼驱动。第III深层的1/3IVaIVb层有简单细胞,其中IVb主要是简单细胞、几乎无复杂细胞。第IV层细胞基本都是单眼驱动。第VVI层主要是复杂和超复杂细胞,双眼驱动。因为视皮层的第IV层接受丘脑LGN输入,提示IV层简单加工后,再在其他层曾进一步加工。



11.12    结语


生物学研究,与其他自然科学一样,迄今以还原为主,取得了很大的进展。还原的途径在可以预见的未来会继续发挥很大作用。但是,整合也是明显需要的,在少数领域,整合取得了一定的进展,虽然远不如还原。显然,在生物学研究成功应用还原的范围和例子都超过整合的原因是技术性,而不是理念性。在分子交互作用、在细胞内部、细胞之间、组织、系统等层面,更多的整合有待进一步研究。


研究神经系统对整合需求最为明显,因为没有整合,只有细胞层面的反应,不能形成认知。虽然视觉系统的整合加工仍然是认知的重要模型,其他认知如嗅觉、听觉的神经生物学也有很大进展,与我们对视觉的理解相辅相成。而情绪、语言、思维等更高级的脑功能,需要更多地从整合层面进行研究和理解。



1Mountcastle和两位同事的结果最初于1955年在美国生理学会宣读(Davis, Berman and Mountcastle1955Mountcastle, Berman and Davis1955),但等到1957年发表文章的时候,两位合作者不敢接受Mountcastle的功能柱概念,因此文章仅Mountcastle一位作者(Snyder2015)。


2HubelWiesel初期工作在霍普金斯大学,1959年他们随Kuffler到哈佛医学院药理系,1966年哈佛建立由Kuffler主持的世界上第一个神经生物学系,主要以Kuffler从霍普金斯带到哈佛的人为主,用生理、生化等多学科研究神经生物学问题。


3HubelWiesel有一系列视觉发育的研究(Wiesel and Hubel1963a,1963b, 1965a, 1965b; Hubel and Wiesel,1963b, 1965, 1970),一个主要发现是视觉发育的关键期,在关键期没有视觉经历对视觉的影响特别大,而关键期之前或者之后闭眼影响就小很多。



参考文献

Arshavsky VY, Lamb TD, Pugh Jr EN (2002) G proteins and phototransduction. Annual Review of Physiology 64: 153-187.

Barlow HB (1953) Summation and inhibition in the frog’s retina. Journal of Physiology119:69-88.

Barlow HB, FitzHugh R and Kuffler SW (1957) Change of organization in the receptive fields of the cat’s retina during dark adaptation. Journal of Physiology 137:338-354.

Baylor DA, Lamb TD and Yau KW (1979) Responses of retinal rods to single photons. Journal of Physiology 288:613-634.

Belrhali H, Nollert P, Royant A, Menzel C, Rosenbusch JP, Landau EM and Pebay-Peyroula E (1999). Protein, lipid and water organization in bacteriorhodopsin crystals: a molecular view of the purple membrane at 1.9 Å resolution. Structure 7:909-917.

Berson DM, Dunn FA and Takao M (2002). Phototransduction by retinal ganglion cells that set the circadian clock. Science 295:1070-1073.

Böll F (1877) Zur Anatomie und Physiologie der Retina. Archiv für Anatomie, Physiologie Abt:4-35.

Dalton J (1798). Extraordinary facts relating to the vision of colours with observations. Memoirs of the Literary and Philosophical Society of Manchester 5:28-45.

Davis PW, Berman AL and Mountcastle VB (1955) Functional analysis of the first somatic area of the cat’s cerebral cortex in terms of activity of single neurons. American Journal of Physiology 183:607.

Dowling JE2002George Wald 18 November 1906-12 April 1997. Proceedings of the American Philosophical Society146:431-439.

Fesenko EE, Kolesnikov SS and Lyubarsky AL (1985) Induction by cyclic GMP of cationic conductance in plasma membrane of retinal rod outer segment. Nature 313:310 –313.

Ferster D, Chung S and Wheat H (1996) Orientation selectivity of thalamic input to simple cells of cat visual cortex. Nature380:249−252.

Fridericia LS and Holm E (1925). Experimental contribution to the study of the relation between night blindness and malnutrition. American Journal of Physiology 73:63–78.

Granit R (1941) Isolation of colour-sensitive elements in a mammalian retina. Acta Physiologica Scandinavia 3:318-328.

Granit R (1943) The spectral properties of the visual receptors of the cat. Acta Physiologica Scandinavia 5:21-22.

Granit R (1945) The colour receptors of the mammalian retina. Journal of Neurophysiology 8:197-210. 

Hargrave PA, McDowell JH, Sremiatkowski-Juszczak EC, Fong S-L, Kuhn H, Wang JK, Curtis DR, Mohana Rao JK, Argos P, and Feldmann RJ (1982). The carboxy terminal one-third of bovine rhodopsin: its structure and function. Vision Research 22:1429-1438.

Hargrave PA, McDowell JH, Curtis DR, Wang JK, Juszczak E, Fong SL, Rao JK, Argos P (1983) The structure of bovine rhodopsin. Biophysics of Structure and Mechanism 9:235–244.

Hartline HK and Graham CH (1932) Nerve impulses from single receptors in the eye. Journal of Cellular and Comparative Physiology 1:227-295.

Hartline HK (1938)The response of single optic nerve fibbers of the vertebrate eye to illumination of the retina. American Journal of Physiology 121:400-415.

Hartline HK (1940a)The receptive fields of optic nerve fibers. American Journal of Physiology 130:690-699.

Hartline HK (1940b). The effects of spatial summation in the retina on the excitation of the fibers of the optic nerve. American Journal of Physiology 130:700-711.

Hartline HK (1942The neural mechanisms of vision. Harvey Lectures 37:39-68.

Hattar S, Liao HW, Takao M, Berson DM and Yau KW (2002). Melanopsin containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295:1065-1070.

Hecht S (1919). Sensory equilibrium and dark adaptation in Mya arenaria. Journal of General Physiology 1:545-558.

Hecht S, Shlaer S, Pirenne M (1942) Energy, quanta and vision. Journal of General Physiology 25:819–840.

von Helmholtz H (1910) Treatise on Physiological Optics, translated by Southall JPC (1924), Vol. 2 the sensations of vision. The Optical Society of America.

Horiguchi H, Winawer J, Dougherty RF and Wandell BA (2012). Human trichromacy revisited. Proceedings of the National Academy of Sciences USA 110:260-269.

Hubel DH (1957) Tungsten microelectrode for recording from single units. Science 125:549-550.

Hubel DH (1959) Single unit activity in striate cortex of unrestrained cats. Journal of Physiology 147:226-238.

Hubel DH (1996)A big step along the visual pathway. Nature 380:197−198.

Hubel DH and Wiesel TN (1959) Receptive fields of single neurones in the cat's striate cortex. Journal of Physiology 148:574-91.

Hubel DH and Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. Journal of Physiology 160:106-154.

Hubel DH and Wiesel TN. (1963a) Shape and arrangement of columns in cat's striate cortex. Journal of Physiology 165:559-68.

Hubel DH and Wiesel TN (1963b) Receptive fields of cells in striate cortex of very young, visually inexperienced kittens. Journal of Neurophysiology 26:994-1002.

Hubel DH and Wiesel TN (1965) Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. Journal of Neurophysiology 28:229-289.

Hubel DH and Wiesel TN (1968) Receptive fields and functional archicture of monkey striate cortex. Journal of Physiology 195:215-243.

Hubel DH and Wiesel TN (1970) The period of susceptibility to the physiological effects of unilateral eye closure in kittens. Journal of Physiology 206:419-36.

Hubel DH and Wiesel TN (1998). Early exploration of the visual cortex. Neuron 20:401-12.

Hubel DH and Wiesel TN (2005). Brain and Visual Perception: the story of a 25-year collaboration. Oxford University Press.

Hunt DM, Dulai KS, Bowmaker JK and Mollon JD (1995). The chemistry of John Dalton’s color blindness. Science267:984 – 988.

Jia H, Rochefort NL, Chen X and Konnerth A (2010) Dendritic organization of sensory input to cortical neurons in vivo. Nature 464:1307-1312.

Jung R (1953) Neuronal discharge. Electroencephalography and Clinical Neurophysiology Supplement 4:57-71.

Jung R (1958) Excitation, inhibition and coordination of cortical neurones. Experimental Cell Research Suppl 5:262-271.

Jung R and Baumgartner G (1955) Hemmungsmechanismen und bremsende Stabilisierung an einzelnen Neuronen des optischen Cortex. Pflüger Archiv für die gesamte Physiologie des Menschen und der Tiere 261:434-456.

Kimura Y, Vassylyev DG, Miyazawa A, Kidera A, Matsushima M, Mitsuoka K, Murate K, Hirai T and Fujiyoshi Y (1997). Surface of bacteriorhodopsin revealed by high-resolution electron crystallography. Nature 389:206-211.

Kuffler SW (1953) Discharge patterns and functional organization of mammalian retina. Journal of Neurophysiology 16:37-68.

Kühne W (1879) Chemische Vorgänge in der Netzhaut. Hermann L. eds. Handbuch d. Physiologie d. Sinnesorgane Erster Theil, Gesichtssinn. F.C.W. Vogel Leipzig, Germany.

Kühne W (1882) Beiträge zur Optochemie. Untersuchungen aus dem physiologischen Institute der Universität Heidelberg 4:169-249.

Lorente De Nó R (1949) Cerebral cortex: architecture, intracortical connections, motor projections. Chap. 15 in: FULTON, J. F., Physiology of the nervous system, 3rd ed. New York and London, Oxford University Press.

Marks WB, Dobelle WH and MacNichol EF (1964) Visual pigments of single primate cones. Science 143:1181-1183.

Maxwell JC (1872) On colour vision. Proceedings of the Royal Institution of Great Britain 6:260-271.

McCollum EV and Davis M (1913) The necessity of certain lipins in the diet during growth. Journal of Biological Chemistry 15:167–175.

McCollum EV and Davis M (1915) The nature of the dietary deficiencies of rice. Journal of Biological Chemistry 23:181–230.

Mountcastle VB (1957) Modality and topographic properties of single neurons of cat‘s somatic sensory cortex. Journal of Neurophysiology 20:408-434.

Mountcastle VB (1997) The columnar organization of the neocortex. Brain 120:701–722.

Mountcastle VB, Berman AL and Davis PW (1955) Topographic organization and modality representation in the first somatic area of the cat’s cerebral cortex by method of single unit analysis. American Journal of Physiology 183:646.

Müller R (1851). Zur Histologie der Netzhaut. Zeitschrift für wissenschaftliche Zoologie 3:234-237.

Nathans J and Hogness DS (1983) Isolation, sequence analysis, and intron-exon arrangement of the gene encoding bovine rhodopsin. Cell 34:807-814. 

Nathans J and Hogness DS (1984) Isolation and nucleotide sequence of the gene encoding human rhodopsin. Proceedings of the National Academy of Sciences USA 81:4851-4855. 

Nathans J, Thomas D, Hogness DS (1986). Molecular genetics of human color vision: the genes encoding blue, green, and red pigments. Science 232:193-202. 

Nathans J, Piantanida TP, Eddy RL, Shows TB and Hogness DS (1986) Molecular genetics of inherited variation in human color vision. Science 232:203-210.

Newton I (1704) Opticks. Smith and Walford, London.

Osborne TB and Mendel LB (1913) The relation of growth to the chemical constituents of the diet. Journal of Biological Chemistry 15:311-326.

Ovchinnikov Iu A, Abdulaev NG, Feigina M, Artamonov ID, Bogachuk AS (1983) Visual rhodopsin. III. Complete amino acid sequence and topography in a membrane. Bioorganicheskaia Khimiia 9:1331–1340.

Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289:739–745.

Palmer G (1777)Theory of Colour and Vision, London: Leacroft.

Peters A and Sethares C (1996) Myelinated axons and the pyramidal cell modules in monkey primary visual cortex. Journal of Comparative Neurology 365:232-255.

Provencio I, Jiang G, De Grip WJ, Hayes WP, Rollag MD (1998) Melanopsin: an opsin in melanophores, brain, and eye. Proceedings of the National Academy of Sciences USA 95:340–345.

Provencio I, Rodriguez IR, Jiang G, Hayes WP, Moreira EF and Rollag MD (2000) A novel human opsin in the inner retina. Journal of Neuroscience 20:600-605.

Rakic P (1972) Mode of cell migration to the superficial layers of fetal monkey neocortex. Journal of Comparative Neurology 145:61–83.

Rakic (1995) A small step for the cell, a giant leap for mankind: a hypothesos of neocortical expansion during evolution. Trends in Neuroscience18:383-388.

Reid RC and Alonso J-M (1995) Specificity of monosynaptic connections from thalamus to visual cortex. Nature 378:281−284.

Ripps H (2008) The color purple: milestones in photochemistry. Federation of American Societies of Experimental Biology Journal 22:4038-4043.

Senthilan PR, Piepenbrock D, Ovezmyradov G, Nadrowski B, Bechstedt S, Pauls S, Winkler M, Möbius W, Howard J, Göpfert MC (2012) Drosophila auditory organ genes and genetic hearing defects. Cell 150:1042-1054.

Smith SO (2010). Structure and activation of the visual pigment rhodopsin annual review of biophysics. Annual Review of Biophysics 39:309-328.

Snyder SH (2015) Vernon B. Mountcastle 1918-2015. Nature Neuroscience 18:318.

Sperry RW, Minor N, Myers RE (1955) Visual pattern perception following subpial slicing and tantalum wire implantations in the visual cortex. Journal of Comparative Physiology and Psychology 48:50-58.

Talbot SA and Kuffler SW (1952). A multibeam ophthalmoscope for the study of retinal physiology. Journal of the Optical Society of America 42:931-936.

van der Velden HA (1946) The number of quanta necessary for the perception of light in the human eye. Opthalmologica 111:321–331.

Wald G (1933) Vitamin A in the retina. Nature 132:316.

Wald G (1935) Vitamine A in eye tissue. Journal of General Physiology 18 :905-915. 

Wald G (1935) Carotenoids and the visual cycle. Journal of General Physiology 19:351-371.

Wald G (1968) The molecular basis of visual excitation.Nature 219:800-807.

Walton GE, Bower NJA and Bower TGR (1992) Recognition of familiar faces by newborns. Infant Behavioral Development 15:265-269.

Wiesel TN and Hubel DH (1963a) Effects of visual deprivation on morphology and physiology of cells in the cats lateral geniculate body. Journal of Neurophysiology 26:978-93.

Wiesel TN and Hubel DH (1963b) Single-cell responses in striate cortex of kittens deprived of vision in one eye. Journal of Neurophysiology 26:1003-1017.

Wiesel TN, Hubel DH (1965a) Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens. Journal of Neurophysiology 28:1029-40.

Wiesel TN, Hubel DH (1965b) Extent of recovery from the effects of visual deprivation inkittens. Journal of Neurophysiology 28:1060-72.

Wolf G (2001) The discovery of the visual function of Vitamin A. Journal of Nutrition 131:1647-1650.

Young T (1802)On the Theory of Light and Colours. Philosophical Transactions of the Royal Society of London 92:12-48.

Yudkin AM (1931) The presence of vitamin A in the retina. Archive of Ophthalmology 6:510–517.


阅读

Nathans J, Piantanida TP, Eddy RL, Shows TB and Hogness DS (1986) Molecular genetics of inherited variation in human color vision. Science 232:203-210.


Hubel DH and Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. Journal of Physiology 160:106-154.


饶毅 2020)脸识别



脸识别

同种动物之间相互识别脸既是很高级的视觉认知,也是社会认知。对此,科学发掘了很多现象,也有一些机理研究,但理解有限。


初级视皮层V1继续投射到更高的区域,分为识别where(物体空间位置)的背侧通路和识别what(物体本征)的腹侧通路。


腹侧通路从V1V2V4、及更远的区域,其可分辨的图像特征越来越复杂(Kobatake and Tanaka1994)。颞下皮层(inferotemporal cortexIT)可以识别更复杂的图形,如:圆、方块、多刺圆、手等(Gross, Bender and Rocha-Miranda1969Gross, Rocha-Miranda and Bender1972)。


普林斯顿大学心理系科学家在猴的ITGross, Rocha-Miranda and Bender1972Perret et al., 1982Desimone et al., 1984)和颞上回(superior temporal sulcusSTS)(Bruce et al., 1981)发现了识别脸的细胞,其中IT的脸识别细胞几乎都对脸特异反应,而对其他物体没有反应(Desimone et al., 1984)。


人识别脸的能力强于黑猩猩和猴(Rosenfeld and van Hoesen1979Parr2011)。黑猩猩、猴、绵羊、鸟类(鸡和鸽)、狗等动物也有脸识别细胞(Kendrick and Baldwin1987Ryan and Lea1994Kendrick et al.,1996Pascalis and Kelly2009)。绵羊不仅有识别绵羊脸的细胞,还有识别人脸、狗脸的细胞(Kendrick and Baldwin1987)。羊羔一到两个月认识母亲的脸(Kendrick et al.1998)。雌绵羊还对雄绵羊的脸有偏好(Kendrick et al., 1995)。低等动物一般依赖嗅觉,但有两种蜂(waspsPolistes fuscatusPolistes metricus),P fuscatu是群居的、P metricus是独居的,前者有识别个体脸的能力,后者没有(Sheehan and Tibbets, 2011)。


用行为检测显示人对脸的关注在出生很早期就可能出现:9分钟左右就对脸的反应大于其他(GorenSarty and Wu1975),5周就注视脸(Haith, Bergman and Moore, 1977),对脸是否好看也有不同的反应(Slater19982000)。在4天区分不带围巾的母亲与其他人的脸、35天区分带围巾的母亲和其他人的脸(BushnellSai and Mullin1989WaltonBower and Bower1992Pascalis et al., 1995Bruce et al., 2000BartripMorton and De Schonen2001)。3个月识别熟悉的脸(De Haan et al.2001)。用fMRI检测观察到,两个月的婴儿的对脸反应脑区被脸激活情况类似成人,但脸还激活婴儿的语言区域(Tzourio-Mazoyer et al.2002)。脸激活与成人一样在9岁儿童(Gathers et al.2004)、或12岁(Golarai et al.2007)。黑猩猩在4周左右识别母亲的脸(Myowa-Yamakoshia2005)。


1980年代的一系列电生理实验证明猴的神经元对脸有特异反应(BruceDesimone and Gross,1981;Perret, Rolls and Caan,1982; Desimone et al., 1984; Perrett et al., 1984, 1985a, 1985, 1988b; Rolls, Baylis and Leonard, 1985; Saito et al., 1986; Perret, Mistlin and Chitty, 1987)。STS多感觉区域有只对脸反应的细胞(Bruce et al., 1981)。例如,记录497STS细胞,48个只对脸反应,被脸持续激活,28个细胞在脸有转向、或颜色、大小、距离变化后反应不变(PerretRolls and Caan1982)。早期在IT一次记录中,41个没有反应,110个有反应的细胞中,66个有选择性反应,其中20对形状反应、2个对手反应、3个对脸有选择性反应(Desimone et al., 1984)。可以比较对脸和物体、脸和身体的反应,找到对这三种分别有选择性反应的细胞(Pinsk et al., 2005)。通过fMRI辅助确定电生理电极插入位置,可以找到特定区域内97%的细胞都对脸有选择性反应(Tsao et al., 2006; Friewald, Tsao and Livingston, 2007),说明有脸特异区块(patch)。用脑表面光学成像观察,可以看到对脸呈现有选择性反应的脑区紧密相连(Wang, Tanaka and Tanifuji, 1996, 1998)。从而提出可能有脸朝向的功能柱(Tanaka2003)。功能核磁共振实验也支持具有相似朝向选择性的面孔细胞在皮层上聚集(Dubois et al., 2015)。


脸识别能力有倒置效应,对正立的脸敏感性远远大于倒置的脸(Yin1969Thompson1980)。脸识别细胞对于脸的要求是一个圆加两点一杠(大体相当于脸、眼和嘴)(Kobatake and Tanaka1994)。对脸有全面的识别和部件的敏感(FreiwaldTsao and Livingston2009)。在猴的脸识别细胞研究中,提出抑制性神经元可能对于脸识别很重要,去除GABA的抑制性作用后,原对脸(和其他物体)有特异反应的细胞失去反应特异性(WangFujita and Murayama2000)。用微电流刺激猴的面孔加工脑区50-200毫秒,可以增加其对脸的反应以及对个人面孔的识别(Afraz, Kiani and Esteky, 2006Moelle et al., 2017)。


猕猴面孔脑区中较低级区域的神经元对面孔朝向非常敏感,而高级区域的神经元则可区分不同个体的面孔,且反应不依赖于面孔朝向,说明高级区域表征面孔个体这一抽象概念 (Freiwald and Tsao, 2010)。进一步的研究对面孔个体的具体编码方式进行了探索,用计算模型生成上千张参数化的面孔,给动物呈现面孔图片的同时记录猕猴的面孔脑区,发现面孔细胞的反应和面孔模型中的抽象特征呈简单的线性关系,从~200个细胞的反应可相当准确地重构呈现给动物的原始面孔 Chang and Tsao, 2017)。


人对脸反应的脑区类似于猴(Tsao et al., 2003; Tsao, Moellet and Freiwald, 2008Pinsk et al., 2009Srihasam et al., 2012)。在开颅手术的病人经过允许能用颅内记录事件相关电位改变(Allison et al., 1999; McCarthy et al., 1999, Puce, Allison and McCarthy, 1999),记录到脸特异反应。也直接记录到神经细胞对脸反应(Kreiman, Koch and Fried2000)。更多的是用正电子扫描(PET)(SergentOhta and MacDonald1992Haxby et al., 1994)和fMRIMalach et al., 1995Puce et al., 1996; Clark et al., 1996; Kanwisher, McDermott and Chun1997McCarthy et al., 1997)。可以分别观察几个脑区(FFAOFAfSTS)对脸的部件和构型的敏感性(Liu, Harris and Kanwisher2010)。跨颅磁刺激(TMS)是一种研究脑功能的方法(Walsh and Cowey2000)。用TMS作用于特定脑区,可以观察到脸反应的变化(Pitcher et al., 2007, 2008, 2009)。FFA对脸的部件和构型都敏感,OFAfSTS只对真的脸部件反应、对其构型不反应(Dzhelyova, Ellison and Atkinson, 2010)。


人类有不能识别脸的个体,诊断为脸盲(prosopagnosiafaceblind)(Bodamer1947),分为先天型(发育型)和获得型。脸盲者可以识别其他物体,而不能识别脸(Farah, Levinson and Klein, 1995Farah, 1996; Henke et al., 1998; Nunn, Postma and Pearson, 2001; Duchaine and Nakayama, 2005; Duchaine et al., 2006; Li and Song, 2007; Riddoch et al., 2008)。也有患者可以识别脸但不能识别其他物体(Feinberg et al., 1994; Moscovitch, Winocur and Behrmann1997McMullenFisk and Phillips2000Germine et al., 2011)。对于脸盲的机理,有多种解释,有些脸盲可能确实是脸识别能力的特异变化(Duchaine2006)。


后天获得的脸识别异常,可以是病变或外伤(Yin, 1970; Meadow et al., 1974; Landis et al., 1986; Barton et al., 2002Bouvier and Engel2006Schiltz et al., 2006 Steeves et al., 2006)。右脑单侧外伤就可以导致脸盲。如果可以在脑成像观察到病变部位,有助于了解参与脸识别的脑区(Riddoch et al.,2008)。这些可以与在正常人脑进行的核磁共振成像、外科手术人脑电生理记录相辅相成(Kanwisher, McDermott and Chun1997Tsao et al., 2003Barraclouth and Perret2011)。


双生子研究显示脸识别能力有高度遗传性(Polk et al., 2007Wilmer et al.2010Zhu et al., 2010)。德国一个大学的调查显示2.47%脸盲率(Kennerknecht et al., 2006, 2007),中国香港大学的调查显示1.88%的脸盲率(Kennerknecht, Ho and Wong2008)。遗传性脸盲在一些家系发现(McConachie1976Grueter et al., 2007DuchaineGermine and Nakayama2007SchmalzlPalermo and Coltheart2008Lee et al., 2009)。这些表明经典遗传学和基因组学可以用于研究脸识别。


参考文献

Afraz SR, Kiani R and Esteky H (2006) Microstimulationof inferotemporal cortex influences face categorization. Nature 422:692-695.

Allison T, Puce A, Spencer DD andMcCarthy G (1999) Electrophysiological studies of human face perception. I: Potentials generated in occipitotemporal cortex by face and nonface stimuli. Cerebral Cortex 9:415-430.

Barraclough NE and Perrett DI (2011) from single cells to social perception. Philosophical Transactions of the Royal Society of London B 366:1739-1752.

Bartrip J, Morton J and De Schonen S (2001) Responses to mother's face in 3-week to 5-month-old infants. British Journal of Developmental Psychology 19:219-232.

Bodamer J (1947) Die prosopagnosie. Archiv für Psychiatrie und Nervenkrankheiten 179:6-53.

Bruce CJ, Desimone R and Gross CG (1981) Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. Journal of Neurophysiology 46:369-384.

Bruce V, Campbell RN, Doherty-Sneddon G, Import A, Langton S, McAuley S and Wright R (2000) Testing face processing skills in children. British Journal of Developmental Psychology 18:319-333.

Bushnell IW, Sai F and Mullin JT (1989) Neonatal recognition of the mother’s face. British Journal of Developmental Psychology 7:3-15.

Chang L and Tsao DY (2017) The code for facial identity in the primate brain. Cell 169:1013-1028.

Clark VP, Keil K, Maisog JM, Courtney S, Ungerleider LG and Haxby JV (1996) Functional magnetic resonance imaging of human visual cortex during face matching: a comparison with positron emission tomography. NeuroImage 4:1-15.

de Haan EH (1999) A familial factor in the development of face recognition deficits. Journal of Clinical and Experimental Neuropsychology 21: 312-315.

de Haan M, Johnson MH, Maurer D and Perrett DI (2001) Recognition of individual faces and average face prototype by 1- and 3-month-old infants. Cogitive Development 16:1-20.

Desimone R, Albright TD, Gross CG and Bruce CJ (1984) Stimulus-selective properties of inferior temporal neurons in the macaque. Journal of Neuroscience 4:2051-2062.

Dubois J, de Berker AO and Tsao DY (2015) Single-unit recordings in the macaque face patch system reveal limitations of fMRI MVPA. Journal of Neuroscience 35:2791-2802.

Duchaine B and Nakayama K (2005) Dissociations of face and object recognition in developmental prosopagnosia. Journal of Cognitive Neuroscience 17:249-261.

Duchaine B, Yovel G, Butterworth E and Nakayama K (2006) Prosopagnosia as an impairment to face-specific mechanisms: Elimination of the alternative hypotheses in a developmental case. Cognitive Neuropsychology 23:714-747.

Duchaine B, Germine L and Nakayama K (2007) Family resemblance: ten family members with prosopagnosia and within-class object agnosia. Cognitive Neuropsychology 24:419-430.

Dzhelyova MP, Ellison A and Atkinson AP (2010)Event-related repetitive TMS reveals distinct, critical roles for right OFA and bilateral posterior STS in judging the trustworthiness and sex of faces. Journal of Cognitive Neuroscience 22:203-211.

Farah MJ (1996) Is face recognition “special”? Evidence from neuropsychology. Behavioral Brain Research 76:181-189.

Farah MJ, Levinson KL and Klein KL (1995) Face perception and within category discrimination in prosopagnosia. Neuropsychologia 33:661-674.

Feinberg TE, Schindler RJ, Ochoa E, Kwan PC and Farah MJ (1994) Associative visual agnosia and alexia without prosopagnosia. Cortex 30:395-412.

Freiwald WA, Tsao DY and Livingstone MS (2009) A face feature space in the  macaque temporal lobe. Nature Neuroscience 12:1187-1196.

Freiwald WA and Tsao DY (2010) Functional compartmentalization and viewpoint generalization within the macaque face-processing system. Science 330:845-851.

Gathers AD, Bhatt R, Corbly CR, Farley AB and Joseph JE (2004) Developmental shifts in cortical loci for face and object recognition. NeuroReport 15:1549-1553.

Germine L, Cashdollar N, Duzel E and Duchaine B (2011) A new selective developmental deficit: Impaired object recognition with normal face recognition. Cortex 47:598-607.

Golarai G, Ghahremani DG, Whitfield-Gabrieli S, Reiss A, Eberhardt JL, Gabrieli JDE and Grill-Spector K (2007) Differential development of high-level cortex correlates with category-specific recognition memory. Nature Neuroscience 10:512-522.

Goren CC, Sarty M and Wu PYK (1975) Visual following and pattern discrimination of facelike stimuli by newborn infants. Pediatrics 56:544–549. 

Gross CG, Bender DB and Rocha-Miranda CE (1969) Visual receptive fields of neurons in inferotemporal cortex of the monkey. Science 166:1303-1306.

Gross CG, Rocha-Miranda CE and Bender DB (1972) Visual properties of neurons in inferotemporal cortex of theMacaque. Journal of Neurophysiology 35:96-111.

Grueter M, Grueter T, Bell V, Halligan PW, Horst J, Sperling K, Halligan PW, Ellis HD and Kennerknecht I (2007) Hereditary prosopagnosia: the first case series. Cortex 43:734-749.

Haith MM, Bergman TT and Moore MJ (1977) Eye contact and face scanning in early infancy. Science 198:853–855.

Haxby JV, Horwitz B, Ungerleider LG, Maisog JM, Pietrini P and Grady CL (1994) The functional organization of human extrastriate cortex: a PET-rCBF study of selective attention to faces and locations. Journal of Neuroscience 14:6336-6353.

Henke K, Schweinberger SR, Grigo A, Klos T and Sommer W (1998) Specificity of fact recognition: recognition of exemplars of non-face objects in prosopagnosia. Cortex 34:289-296.

Kanwisher NG, McDermott J and Chun MM (1997) The fusiform face area: A module in human extrastriate cortex specialized for face perception. Journal of Neuroscience 17:4302-4311.

Kendrick KM and Baldwin BA (1987) Cells in temporal cortex of conscious sheep can respond preferentially to the sight of facesScience 236:448-450.

Kendrick KM, Atkins K, Hinton MR, Broad KD, Fabre-Nys C and Keverne B (1995) Facial and vocal discrimination in sheep. Animal Behavior 49:1665–1676.

Kendrick KM, Atkins K, Hinton MR, Heavens P and Keverne B (1996)Are faces special for sheep? Evidence from facial and object discrimination learning tests showing effects of inversion and social familiarity. Behavioral Processes 38:19-35.

Kennerknecht I, Grueter T, Welling B, Wentzek S, Horst J, Edwards S and Grueter M (2006) First report of prevalence of non-syndromic hereditary prosopagnosia (HPA). American Journal of Medical Genetics 140:1617-1622.

Kennerknecht I, Plümpe N, Edwards S and Raman R (2007) Hereditary prosopagnosia (HPA): the first report outside the Caucasian population. Journal of Human Genetics 52:230-236.

Kennerknecht I, Ho NY and Wong VC (2008) Prevalence of hereditary prosopagnosia (HPA) in Hong Kong Chinese population. American Journal of Medical Genetics 146A:2863-2870.

Kobatake E and Tanaka K (1994) Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex. Journal of Neurophysiology 71:856–867.

Kreiman G, Koch C and Fried I (2000). Category specific visual responses of single neurons in the human medial temporal lobe. Nature Neuroscience 3:946-953.

Lee Y, Duchaine B, Wilson H and Nakayama K (2010) Three cases of developmental prosopagnosia from one family: detailed neuropsychological and psychophysical investigation of face processing. Cortex 46:949-964.

Li XB and Song YY (2007) First congenital progopagnosia case reported in China. Progress in Natural Sciences 17:165-171.

Liu J, Harris A and Kanwisher N (2010) Perception of face parts and face configuration: an fMRI study.Journal of Cognitive Neuroscience 22:203-211.

Malach R, Reppas JB, Benson RB, Kwong KK, Jiang H, Kennedy WA, Ledden PJ, Brady TJ, Rosen BR and Tootell RBH (1995) Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proceedings of the National Academy of Sciences USA 92:8135-8138.

McCarthy G, Puce A, Gore J and Allison T (1997) Face-specific processing in the human fusiform gyrus. Journal of Cognitive Neuroscience 9:605-610.

McCarthy G, Puce A, Belger A and Allison T (1999) Electrophysiological studies of human face perception: II. Response properties of face-specific potentials generated in occipitotemporal cortex. Cerebral Cortex 9:431-444.

McConachie HR (1976) Developmental prosopagnosia. A single case report. Cortex 12: 76-82.

McMullen P, Fisk JD and Phillips S (2000) Apperceptive agnosia and face recognition. Neurocase 6:403-414.

Moeller S, Crapse T, Chang L and Tsao DY (2019) The effect of face patch microstimulation on perception of faces and objects. Nature Neuroscience 20:743-752.

Moscovitch M, Winocur G and Behrmann M (1997) What is special about face recognition? Nineteen experiments on a person with visual object agnosia and dyslexia but normal face recognition. Journal of Cognitive Neuroscience 9:555-604.

Myowa-Yamakoshia M, Yamaguchib MK, Tomonagac M, Tanakac M and Matsuzawac T (2005) Development of face recognition in infant chimpanzees (Pan troglodytes). Cognitive Development 20:49-63.

Nunn JA, Postma P and Pearson R (2001) Developmental prosopagnosia: Should it be taken at face value? Neurocase 7:15-27.

Parr LA (2011) The evolution of face processing in primates. Philosophical Transactions of the Royal Society of London B Biological Sciences 366:1764-1777.

Pascalis O, de Schonen S, Morton J, Deruelle C and Fabre-Grenet M (1995) Mother’s facerecognition by neonates: A replication and an extension. Infant Behavioral Development 18:79-85.

Pascalis O and Kelly DJ (2009) The origins of face processing in humans: phylogeny and ontogeny. Psychological Sciences 4:200-209.

Perret DI, Rolls ET and Caan W (1982) Visual neurons responsive to faces in the monkey temporal cortex. Experimental Brain Research 47:329-342.

Perrett DI, Smith,PAJ, Potter DD, Mistlin AJ and Head AS (1984) Neurons responsive to faces in the temporal cortex: Studies of functional organization, sensitivity to identity and relation to perception. Human Neurobiology 3:197-208.

Perrett DI, Smith PAJ, Potter DD, Mistlin,AJ, HeadAS, Milner AD and Jeeves MA (1985a) Visual cells in the temporal cortex sensitive to face view and gaze direction. Proceedings of the Royal Society of London Series B 223:293-317.

Perrett DI, Smith PAJ, Mistlin AJ, Chitt AJ, Head AS, Potter DD, Broennimann R, Milner AD and Jeeves MA (1985b) Visual analysis of body movement by neurones in the temporal cortex of the macaque monkey: a preliminary report. Brain Research16:153-170.

Perrett DI, Mistlin AJ and Chitty AJ (1987) Visual cells responsive to faces. Trends in Neuroscience 10: 358-364.

Perrett DI, Mistlin AJ, Chitty AJ Smith PAJ, Potter DD Broennimann R and Harries MH (1988) Specialized face processing and hemispheric asymmetry in man and monkey: Evidence from single unit and reaction time studies. Behavioral Brain Research 29:245-258.

Pinsk MA, Desimone K, Moore T, Gross CG and Kastner S (2005) Representations of faces and body parts in macaque temporal cortex: A functional MRI study. Proceedings of the National Academy of Sciences USA 102:6996-7001.

Pinsk MA, Arcaro M, Weiner KS, Kaljus JF, Inati SJ, Gross CG and Kastner S (2009) Neural representations of faces and body parts in macaque and human cortex: a comparative fMRI study. Journal of Neurophysiology 101:2581-2600.

Pitcher D, Walsh V, Yovel G and Duchaine B (2007) TMS evidence for the involvement of the right occipital face area in early face processing. Current Biology17:1566-1573.

Pitcher D, Garrido L, Walsh V and Duchaine BC (2008) Transcranial magnetic stimulation disrupts the perception and embodiment of facial expressions. Journal of Neuroscience 28:8929-8933.

Pitcher D, Charles L, Devlin JT, Walsh V and Duchaine B (2009) Triple dissociation of faces, bodies, and objects in extrastriate cortex. Current Biology 19:319-324.

Polk TA, Park J, Smith MR and Park DC (2007) Nature versus nurture in ventral visual cortex: A functional magnetic resonance imaging study of twins. Journal of Neuroscience 27:13921-13925.

Puce A, Allison T, Asgari M, Gore JC and McCarthy G (1996) Differential sensitivity of human visual cortex to faces, letterstrings, and textures: a functional magnetic resonance imaging study. Journal of Neuroscience 16:5205-5215.

Puce A, Allison T and McCarthy G (1999) Electrophysiological studies of human face perception. III: Effects of top-down processing on face-specific potentials. Cerebral Cortex 9:445-458.

Riddoch MJ, Johnston RA, Bracewell RM, Boutsen L and Humphreys GW (2008) Are faces special? A case of pure prosopagnosia. Cognitive Neuropsychology 25:3-26.

Rolls ET (1984) Neurons in the cortex of the temporal lobe and in the amygdala of the monkey with responses selective for faces. Human Neurobiology 3:209-222.

Rolls ET, Baylis GC and Leonard LM (1985) Role of low and high spatial frequencies in the face-selective responses of neurons in the cortex in the superior temporal sulcus in the monkey. Vision Research 25:1021-1035.

Rosenfeld SA and Van Hoesen GW (1979) Face recognition in the rhesus monkey. Neuropsychologia 17:503–509.

Ryan CME and Lea SEG (1994) Images of conspecifics as categories to be discriminated by pigeons and chickens: slides, video tapes, stuffed birds and live birds. Behavioral Processes 33:155-176.

Saito H, Yukie M, Tanaka K, Hikosaka K, Fukada Yand Iwai E (1986) Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey. Journal of Neuroscience 6:145-l57.

Schmalzl L, Palermo R and Coltheart M (2008) Cognitive heterogeneity in genetically based prosopagnosia: A family study. Journal of Neuropsychology 2:99-117.

Sergent J, Ohta S and MacDonald B (1992) Functional neuroanatomy of face and object processing: a positron emission tomography study. Brain 115:15-36.

Sheehan MJ and Tibbets EA (2011) Specialized face learning is associated with individual recognition in paper wasps. Science 334:1272-1275.

Slater A, von der Schulenburg C, Brown E, Badenoch M, ButterworthG, Parsons Sand Samuels C (1998) Newborn infants prefer attractive faces. Infant Behavioral Development 21:345-354. 

Slater A, Bremner G, Johnson SP, Sherwood P, Hayes R, and Brown E (2000) Newborn infants’ preferences for attractive faces: The role of internal and external facial features. Infancy 1:265-274.

Srihasam K, Mandeville JB, Morocz IA, Sullivan KJ and Livingstone MS (2012) Behavioral and anatomical consequences of early versus late symbol training in macaques. Neuron 73:608-619.

Tanaka K (2003) Columns for complex visual object features in the inferotemporal cortex: clustering of cells with similar but slightly different stimulus selectivities. Cerebral Cortex13:90-99.

Tate AJ, Fisher H, Leigh AE and Kendrick KM (2006) Behavioral and neurophysiological evidence for face identity and face emotion processing in animals. Philosophical Transactions of the Royal Society of London B Biological Sciences361:2155-2172.

Thompson P (1980) Margaret Thatcher: a new illusion.Perception 9:483-484.

Tsao DY, Freiwald WA, Knutsen TA, Mandeville JB and Tootell RB (2003) Faces and objects in macaque cerebral cortex. Nature Neuroscience 6:989-95.

Tsao DY, Freiwald WA, Tootell RB and Livingstone MS (2006) A cortical region consisting entirely of face selective cells. Science 311:670-674.

Tsao DY, Moellet S and Freiwald WA (2008) comparing fact patch systems in macaques and humans. Proceedings of the National Academy of Sciences USA 105:19514-19519.

Tzourio-Mazoyer N, de Schonen S, Crivello F, Reutter B, Aujard Y and Mazoyer BM (2002) Neural correlates of woman face processing by 2-month-old infants. NeuroImage 15:454-461.

Walsh V and Cowey A (2000) transcranial magnetic stimulation and cognitive neuroscience. Nature Reviews Neuroscience1:73-79.

Walton GE, Bower NJA and Bower TGR (1992) Recognition of familiar faces by newborns. Infant Behavioral Development 15:265-269.

Wang G, Tanaka K and Tanifuji M (1996) Optical imaging of functional organization in the monkey inferotemporal cortex. Science 272:1665-1668.

Wang G, Tanifuji M and Tanaka K (1998) Functional architecture in monkey inferotemporal cortex revealed byin vivo optical imaging. Neuroscience Research 32:33-46.

Wilmer JB, Germine L, Chabris CF, Chatterjee G, Williams M, Loken E, Nakayama K and Duchaine B (2010). Human face recognition ability is specific and highly heritable. Proceedings of the National Academy of Sciences USA 107: 5238–5241.

Yin RK (1969) Looking at upside-down faces.Journal of Experimental Psychology 81:141-145.

Zhu Q, Song Y, Hu S, Li X, Tian M, Zhen Z, Dong Q, Kanwisher N and Liu J (2010) Heritability of the specific cognitive ability of face perception. Current Biology 20:137-142.


微信扫码关注该文公众号作者

戳这里提交新闻线索和高质量文章给我们。
相关阅读
【暑期课程】美高生物入门:Top30私立美高在职名师带领全面预习生物学知识!走近心理咨询师教育与督导博士项目:培养下一代心理咨询师(下) | 对话心理人名利场||第三任冷面梅拉尼娅的生存之道,特朗普家族大揭密(下)圣雄甘地 信仰的颠覆(三十五)公网传输技术之SRT协议解析(下)大陆本硕申请美国心理咨询博士的经验与挑战(下) | 对话心理人你有这样的老爸老妈公公婆婆吗?哈哈哈~(下)羿鸣生物:基于合成生物学架构全新无创分子诊断底层技术平台,搅动千亿市场我学语文教语文的一生(49)上网课视力下降200度!?用5000字告诉你,居家护眼怎么办吕明华: 智利、秘鲁散记(下)「是BC不是BU!」波士顿学院心理相关项目介绍(下)精益求精 | 第七期《师说》:创新创业合集(下)2022QS排名英国top10公共政策硕士项目详解(下)「THE心理学排名#17」荷兰阿姆斯特丹大学心理学相关项目介绍(下)本世纪最大的一颗炸弹(下)| 今日美政(附音频)京城联努力为球员提供上升空间(下) ——足球追梦人孔兵(二十四)全球右翼观察丨布法罗枪击案(下):大置换——从差异权到种族战争家长必看!如何帮助这些起床困难的孩子(下)对话PPIO联合创始人王闻宇:整合边缘算力资源,开拓更多音视频服务场景英語是我一生的啼笑皆非(完)俄罗斯衰落,有什么影响?2022私域运营待办项:整合数字化基建,探索视频号玩法汉字的巧,楹联的妙(下)【本周讲座报名】《10种进入美国大学的路径》译作|老师柯尔莫戈洛夫的生平和工作(下)麦尔旦逆袭的启示(下)——足球追梦人孔兵(四十五)陆本硕如何申请香港社会心理学博士(下) | 对话心理人2022美国top10教育政策硕士项目详解(下)妈妈的火车(下):嫁了四个人,生过五个孩子,却没有家|故事FM国潮寻味|老字号汽水:重工业遗珠,重生于情怀之外(下)美国前三十私立高中生物名师指导,全面预习9年级生物学知识,适应美高生物课堂!一桩意外翻供的杀人案中案(下)| 人间 · 故事大爆炸2022【系龄人独家发布】GWI全球健康经济报告 | 2021全球健康经济报告总览(下)俄乌战争是拜登和普京间的争霸
logo
联系我们隐私协议©2024 redian.news
Redian新闻
Redian.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Redian.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。